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a b s t r a c t

In this paper, we present a solid model deformation method based on layered conformal mapping. For a

solid model represented by base patch and height field, the shape of the model can be deformed by

interactive means, such as changing the base patch by conformal mappings and adjusting the height

field by a pre-defined function. In our method, the deformation is predictable and the transformation

function of the deformation can be expressed analytically by Schwarz–Christoffel formula. To perform a

deformation of a cylinder to a desired solid of rotation hierarchically, a generalized Schwarz–Christoffel

formula is also introduced. Numerical examples show that the proposed method is convenient and

efficient to deform solid models, especially to solids with genus zero.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most important operations in computer graphics
and computer-aided design is object deformation. This operation
allows easy creation of plain shaped objects from regular shapes
like spheres, and allows the deformation of exiting objects [1].

The purpose of deformation is to satisfy the geometric
requirements, but more importantly, the understanding of the
mutual dependence and internal continuity before and after the
deformation facilitates its further applications in mathematics
and scientific computations such as in CAGD or moving mesh
computation. In addition, in many applications it is important to
preserve some geometric and topological properties under shape
changes of the models. The best-known example is probably
model editing: The overall shape follows the specified global
deformation while the properties like, e.g., continuity, surface
direction and genus number, are preserved.

In this paper, we introduce a solid model deformation method
based on layered conformal mapping. For a solid model of a
product structure, we represent it by base patch and height field,
and then the shape of the model can be deformed by interactive
means, such as changing the base patch by conformal mappings
and adjusting the height field by a pre-defined function. To
perform a deformation of a cylinder to a desired solid of rotation
hierarchically, a generalized Schwarz–Christoffel formula is also
introduced in this paper.
ll rights reserved.
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Our approach is free of tools and requires no pre-processing. As
such, it allows users to immediately manipulate the model
directly and easily compute the corresponding explicit expression
of the transformation and conveniently get the relationship
between an original and its deformed model. In addition, due to
the properties of conformal mapping, the deformation satisfies
the demands on preserving some geometric and topological
properties and still allows for considerable shape changes.

Although there are some topological restrictions in our current
work, the presented method can be conveniently applied to a solid
model with genus zero as numerically validated in our experi-
ments. The main contribution of our work is that a layered
conformal deformation scheme is studied, which not only satisfies
the shape changing requirements but also is easy to be analyzed
the mutual relationship between before and after deformation.

The rest of the paper is organized as follows. We will first
review some related work in Section 2, followed by a brief sketch
of conformal mapping theory in Section 3. Then we present an
overview of our method in Section 4. Section 5 discusses the base
patch mapping. We analyze the properties of the proposed
deformation method in Section 6. In Section 7, two simple
algorithms and some numerical examples are given. We conclude
the paper in Section 8.
2. Related work

There has been a considerable amount of work on model
deformation in recent years. All the deformation methods
independent of the representation of underlying objects can be
divided into two classes according to whether they require a
deformation tool or not [2].

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.09.010
mailto:luozx9609@vip.sina.com
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Fig. 1. Conformal mapping uses complex function to transform 2D domains.
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Watt [3] developed the global and local non-tools deformation
method proposed by Barr [4] to include intuitive tools in
controlling deformation, where the concept of factor curve was
introduced. Another kind of deformation method with free of
tools introduced by Borrel and Bechmann [5] is a space
deformation. A large range of deformation shapes such as
arbitrary shaped bumps can be designed using this technique.

As for the class of deformation methods which employ
some deformation tools, it essentially falls into three kinds.
That is FFD [6–8] (free-form deformation), AxDf [9] (axial
deformation) and PsDf [10] (parametric surface deformation).
FFD introduced by Sederberg and Parry is one of the most
versatile and powerful tools for representing and modeling
flexible objects. FFD uses a Bézier parallelepiped lattice as a
deformation tool. The lattice is defined by its control points.
The objects embedded in the lattice are deformed by simply
moving the control points. AxDf defines a deformation technique
that make use of a 3D axis for deforming existing objects.
More precisely, the AxDf accomplishes the deformation by
adopting a parametric curve as the axis. The object is then
attached to the axis and deformed accordingly when the shape of
the curve is changed. The method called PsDf is a new FFD
controlled by parametric surfaces. PsDf adopts two parametric
surfaces, namely a shape surface and a height surface, as
deformation tools. Objects to be deformed are embedded into
the parametric domain of a shape surface through mapping
function. Similar to that of both FFD and AxDf, while the shape
of the two parametric surfaces are modified, the deformation will
be passed to the object automatically.

Alternative methods for various kinds of model deformation
rely on a relative representation [11–15], namely Laplacian
coordinates. Ju et al. [16] developed a similar deformation
method based on mean value coordinates. In Ju’s method,
the model is enclosed by a control mesh and each vertex v

in the model is represented as an affine combination of some
control mesh’s vertices pj, and deformation is achieved by
adjusting the control mesh and propagating the change to the
model. However, the mean value coordinates method lacks
the interior locality and non-negativity properties. Pushkar et al.
[17] generalized and improved Ju’s method by introducing
harmonic coordinates so that their method succeeds all the
figures of the mean value coordinates method and makes up
for shortcomings of Ju’s method. Alexa [18] presented a survey
of the mesh editing methods based on discrete Laplace and
Poisson models.

Zayer et al. [19] constructed harmonic fields over a manifold
and applied them to guide local deformations for surface
editing and to establish correspondence for deformation
transfer between reference and target shape. Similar to Zayer’s
method, Huang et al. [20] introduced a deformation method
based on a modified barycentric interpolation technique. The
central idea of Huang’s method is to add a local transformation
on each control vertex for interpolation, and then the local
transformations can be optimized to minimize the first-order
discontinuity.

Our approach avoids factoring the relative representation by
directly applying the deformation to the original model. Hence,
our approach provides a computational efficient and simple
framework for model deformation, especially for a model with
genus zero.
3. Conformal mapping theory

Conformal mapping uses complex function to transform 2D
domains (Fig. 1). An analytic function f ðzÞ is conformal at any
point where non-zero derivative exists [21]. The derivative of f ðzÞ

exists at a point z if and only if the partial derivatives of u and v

exist and obey the Cauchy–Riemann conditions:

qu

qx
¼
qv

qy
and

qu

qy
¼ �

qv

qx
, (1)

where z ¼ xþ iy 2 C; f ðzÞ ¼ uþ iv 2 C and C is the complex field.
The existence of a conformal mapping between any two simply

connected regions is guaranteed by the Riemann mapping
theorem. The name of conformal mapping is derived from the
properties by which it is characterized. To show these properties,
consider an arc G given by zðtÞ ¼ xðtÞ þ iyðtÞ, which lies in a
domain D, where t 2 ½a; b�; xðtÞ; yðtÞ 2 R. Suppose f ðzÞ is analytic in
D and the arc f ðGÞ is given by wðtÞ ¼ f ðzðtÞÞ. By the Chain rule,
w0ðtÞ ¼ f 0ðzðtÞÞz0ðtÞ. It is obviously that w0ðtÞa0 if z0ðtÞa0 and
f 0ðzÞa0, and furthermore,

argðw0Þ ¼ argðz0Þ þ argðf 0ðzÞÞ and jw0j ¼ jf 0ðzÞjjz0j, (2)

where arg is the argument of a complex number, and j � j is the
modulus of a complex number. Eq. (2) can be geometrically
interpreted as follows: The right angles between grid lines are
preserved, and the stretching is uniform in all directions at any
given point. Hence conformal mapping satisfies the local demands
on rigidity and still allows for considerable global distortion [22].
4. Conformal mapping-based deformation

Let V ¼ ðx1; x2; x3Þ be a sampled point from a solid model P. In
this paper, we focus on the solid models with manifolds as their
constituent topological spaces and consider the model P to be
restricted to the following so-called product structure.

Definition 1. If a solid model P is homeomorphic to the product
B� F, where B ¼ fðx1; x2Þjðx1; x2Þ 2 R2

g and F ¼ fx3jx3 2 Rg, then we
say that P is of a product structure.

Actually, a solid model P is of a product structure B� F means
that it is a trivial fiber bundle with its base space B and fiber F. In
addition, the projective map p : P! B and its inverse p�1 : B! P

are both continuous. Let P be represented by a pair ðB; zÞ, where B

is the base space of P and z is a height field. This formalism
provides a general framework and is well suited to the
representation in this paper.

We denote an original solid model and its deformed model by
P and P, respectively. The deformation mapping

s : P�!P

ðx1; x2; x3Þ�!ðy1; y2; y3Þ (3)

is defined as a composite mapping z �c, and then

P ¼ sðPÞ ¼ zðcðBÞÞ, (4)

where B is the base patch of P.
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Fig. 2. The deformation procedure.
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Precisely, the mapping

c : B�!B

ðx1; x2Þ�!ðuðx1; x2Þ; vðx1; x2ÞÞ (5)

between the base patch B and another pre-defined patch B

depends on a desired deformation. Furthermore, the mapping

z : B�!P

ðy1; y2Þ�!ðy1; y2; y3Þ (6)

is the height field associated with the deformed model P, where
y1 ¼ uðx1; x2Þ, y2 ¼ vðx1; x2Þ and y3 is determined by a pre-defined
function jðx1; x2; x3Þ.

In brief, we define the transformation from P to P as

s : P�!P

ðx1; x2; x3Þ�!ðuðx1; x2Þ; vðx1; x2Þ;jðx1; x2; x3ÞÞ. (7)

The deformation procedure can be shown clearly from Fig. 2.
The shape of an original model can be modified by inter-

active means, such as changing the base patch and adjusting
the height field. Let B be the objective base patch, then it
provides an essential shape of the deformed model in the
horizontal direction. Simultaneously, we adopt a section function
jðx1; x2; x3Þ to adjust the shape of the model in the vertical
direction.

As mentioned above, we defined the base patch as the
projection of P on x1ox2 plane. Actually, we can generalize the
concept of base patch by defining it as the projection of P on
arbitrary plane.

For a versatility of the idea of this paper, our method
can be applied to virtually any geometric model such as mesh
model and parametric model since the deformation method
adopted in this paper is independent of the type of the geometric
model. Indeed, the deformation method of the paper can be
also used to the field of modeling from some simple primitives.
In addition, one can easily apply the method of this paper
to a local region of a given model and obtain a local deformation
of the model.
5. Base patch mapping

In this section, we consider to construct the base patch
mapping by the conformal mapping.

5.1. Schwarz–Christoffel mapping

For a given region with polygonal boundary, a general method
of constructing the conformal mapping is offered by Schwarz–
Christoffel transformations.

Theorem 1 (Henrici [23]). Suppose a polygon D that has complex

vertices (possibly infinite) w1;w2; . . . ;wn, given in counter-clockwise
order. To each vertex wk ðk ¼ 1;2; . . . ;nÞ corresponding to an interior

turning angle akp (k ¼ 1;2; . . . ;n), where 0oako2. Then every

function which maps unit disk conformally onto the interior of D and

satisfies f ð0Þ ¼ a can be expressed in the form

f ðzÞ ¼ aþ c

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz, (8)

where c is a suitable complex constant, zk are the pre-vertices of wk

and jzkj ¼ 1 ðk ¼ 1;2; . . . ;nÞ. The map f may be made unique by

requiring that f 0ð0Þ ¼ c be positive, or by prescribing the position of

one pre-vertex zk.

We denote the map f ðzÞ as a disk-map. A map between two
polygons can be obtained by using a composite map which
consists of one forward and one inverse disk-map.

We regard the pre-vertices zk ðk ¼ 1;2; . . . ;nÞ in (8) as the
parameters of the Schwarz–Christoffel mapping function. The
Schwarz–Christoffel formula is mathematically appealing, but
problematic in practice. The main practical difficulty with the
formula (8) is that except in special cases, the pre-vertices zk

(k ¼ 1;2; . . . ;n) cannot be computed analytically. This is the
Schwarz–Christoffel parameter problem [24], and its solution is
the key problem in any Schwarz–Christoffel map. Once the
parameter problem is solved, the multiplicative constant c can
be found and the Schwarz–Christoffel formula is an explicit
representation of the mapping function f. Though the Schwarz–
Christoffel parameter problem cannot be computed analytically,
its solution can be numerically solved by the Schwarz–Christoffel
toolbox [25] in MATLAB, which is well suited for the interactive
computation of Schwarz–Christoffel mappings.
5.2. Generalized Schwarz–Christoffel formula

Suppose a solid model P has serial cross sections Bj at
the vertical height hj ðj ¼ 1;2; . . . ;mÞ. Bj is a simply connected
domain and bounded by a polygon Dj with complex vertices
wj

1;w
j
2; . . . ;w

j
nj

, and each vertex wj
k is corresponding to an interior

turning angle aj
kp, where 0oaj

ko2 ðk ¼ 1;2; . . . ;njÞ. By Theorem 1,
the function which maps unit disk conformally onto Bj can be
expressed in the form

f jðzÞ ¼ aj þ cj

Z z

0

Ynj

k¼1

1�
z

zj
k

 !aj

k
�1

dz, (9)

where aj and cj are suitable complex constants, zj
k are the pre-

vertices of wj
k and jzj

kj ¼ 1 ðj ¼ 1;2; . . . ;mÞ. Then the following
piecewise function:

f ¼

f 1; x3 ¼ h1;

..

.

f j; x3 ¼ hj;

..

.

f m; x3 ¼ hm

8>>>>>>>>><
>>>>>>>>>:

(10)

maps a cylinder to P in a hierarchical conformal manner, where
f j ðj ¼ 1;2; . . . ;mÞ is defined in (9). In application, it is desired that
a deformed model can be determined by some given patches in
the key positions and the number of the patches should be as
small as possible.

Definition 2. Two polygon patches B1 and B2 are similar if all
the corresponding interior angles of them are equal and all the
corresponding edges are proportionate (i.e., B2 ¼ aþ cB1, where a

and c are two complex constants).
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Lemma 2. Let B1 and B2 be two similar polygon patches, f 1 and f 2 be

two Schwarz–Christoffel mappings which map unit disk conformally

onto B1 and B2, respectively. Then f 1 and f 2 have same parameters.

Proof. The complex constants a and c in formula (8) just
determine the position and the size of the polygon [21]. Therefore,
if two patches B1 and B2 are similar, the Schwarz–Christoffel
mapping functions f 1 and f 2 associated with them are only
different from the complex constants a and c. In other words, f 1

and f 2 have same parameters. &

Lemma 3. Let B1 and B2 be two similar polygon patches, and the

functions which map unit disk D conformally onto B1 and B2,
respectively, be

f 1ðzÞ ¼ a1 þ c1

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz,

f 2ðzÞ ¼ a2 þ c2

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz.

Let B ¼ ð1� tÞ � B1 þ t � B2, where t is a real constant, then the

function which maps unit disk conformally onto B can be expressed in

the form

f ðzÞ ¼ aþ c

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz, (11)

where a ¼ ð1� tÞ � a1 þ t � a2 and c ¼ ð1� tÞ � c1 þ t � c2.

Proof. Apparently B is similar to B1 and B2, with Lemma 2, the
Schwarz–Christoffel mapping f associated with B have same
parameters with f 1 and f 2. We can express f as

f ðzÞ ¼ aþ c

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz,

where a and c are two complex constants. Since B ¼ ð1� tÞ � B1þ

t � B2, then

a ¼ ð1� tÞ � a1 þ t � a2; c ¼ ð1� tÞ � c1 þ t � c2.

Combining the results presented above and the classic interpola-
tion theory, we can get a technique that conformally maps a
cylinder to a solid of rotation. In the vertical direction, we define a
set of basis functions fjðhÞ over the interval ½h1;hm� with interior
joints h2;h3; . . . ;hm�1, which have the following properties:

fiðhjÞ ¼ dij ¼
1; i ¼ j;

0; iaj;

(
i; j ¼ 1;2; . . . ;m. (12)

Furthermore, we define serial similar polygon patches B1;B2;

. . . ;Bm in parallel with the horizontal plane. With Lemma 3, we
can get the following theorem.

Theorem 4. For a cylinder P ¼ fðx1; x2; x3Þjx
2
1 þ x2

2 ¼ 1; x3 2 ½t1; tm�g,
denote P ¼ D� H, where D ¼ fðx1; x2Þjx

2
1 þ x2

2 ¼ 1g and H ¼ fx3jx3 2

½t1; tm�g. Suppose a solid of rotation P has cross sections Bj at the

vertical height hj ðj ¼ 1;2; . . . ;mÞ. Then the function which maps P to

P in a hierarchical conformal manner can be expressed in the form

Fðz;hÞ ¼ aðhÞ þ cðhÞ

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz, (13)

where z ¼ x1 þ ix2 2 D; h 2 H, fjðhÞ are the basis functions stated in

(12), aðhÞ ¼
Pm

j¼1 fjðhÞaj and cðhÞ ¼
Pm

j¼1 fjðhÞcj.
Proof. Based on the properties of fjðhÞ, we have

Fðz;hjÞ ¼ f jðzÞ ¼ aj þ cj

Z z

0

Yn

k¼1

1�
z

zk

� �ak�1

dz,

j ¼ 1;2; . . . ;m.

Since f jðzÞ maps unit disk conformally onto Bj, Fðz;hÞ maps the
cross section of P conformally onto the cross section of P at the
vertical height hj ðj ¼ 1;2; . . . ;mÞ. Furthermore, 8h 2 H, we denote
B ¼

Pm
j¼1 fjðhÞBj. It is evident that B is a cross section of P and is

similar to Bj ðj ¼ 1;2; . . . ;mÞ. With Lemma 3, we can see Fðz;hÞ
maps unit disk conformally onto B. Therefore, Fðz;hÞmaps P to P in
a hierarchical conformal manner. &

As aforementioned, the mapping function defined in (13)
can be used to map a cylinder into a solid of rotation in a
layered conformal manner. We call (13) a generalized Schwarz–
Christoffel formula.

5.3. Other numerical methods for conformal mapping

Circle packing method was introduced in [26]. A circle packing
is a configuration of circles with a specified pattern of tangencies
[27]. Thurston conjectured in 1985 [28] that maps between circle
packing could be used in the approximation of classical conformal
mappings. His conjecture was confirmed by Rodin and Sullivan
[29]. Collins and Stephenson [30] have implemented these ideas
in their software CirclePack. However, on the more practical side,
for those involved in numerical conformal mapping circle packing
may appear to be a disappointment: the packing process turns out
to be rather slow, data sets are bulky, and the process of laying out
the packing itself introduces additional error. Circle packing
certainly cannot compete with the classical numerical methods
for speed and accuracy [31].

If the base patch B is a domain with smooth bounding qB, there
are some other methods for numerical evaluation of a conformal
mapping from B to unit disk, such as the Szegö method [32],
Symm’s integral equation method [33], and the Fornberg method
[34], etc. Here we do not review them in detail since the limit of
this paper.
6. Properties of the deformation method

Jacobian matrices are generally used to compute the trans-
formation of fundamental geometric properties. For Ck

ðkX1Þ
1–1 mapping

f ðx1; . . . ; xnÞ ¼ ½y1ðx1; . . . ; xnÞ; . . . ; ymðx1; . . . ; xnÞ�,

the ði; jÞ element of Jacobian matrix J is qyi=qxj, and df ¼ J dX,
where X ¼ ½x1; x2; . . . ; xn�.

6.1. Topological properties

The Jacobian matrix of the transformation associated with the
deformation s in (7) is

Js ¼

qu
qx1

qu
qx2

0

qv
qx1

qv
qx2

0

j0x1
j0x2

j0x3

0
BB@

1
CCA, (14)

where qu=qx1; qu=qx2; qv=qx1; qv=qx2satisfy the Cauchy–Riemann

condition stated in (1).

Theorem 5. For the deformation stated in (7), the deformation is

continuous, not self-intersection, and topologically consistent, if and

only if j0x3
40.
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Proof. The determinant of the Jacobian matrix Js in (14) is

jJsj ¼ j0x3

qu

qx1
�
qv

qx2
�

qu

qx2
�
qv

qx1

� �
,

and qu=qx1, qu=qx2, qv=qx1, qv=qx2 satisfy the Cauchy–Riemann

condition, so

jJsj ¼ j0x3

qu

qx1

� �2

þ
qv

qx1

� �2
" #

.

However, due to the request of conformality ux1
þ ivx1

a0, and
j0x3

40, then Js40, which completes the proof. &

The additional remarks of the theorem are as follows. It is worth
noticing that when jJsjp0, sometimes it is also useful in practice.
In detail, when jJsj ¼ 0, which means that ðqu=qx1Þ

2
þ ðqv=qx1Þ

2
¼

0 or j0x3
¼ 0, a deformation from a smooth model to a model with

edges could be obtained if ðqu=qx1Þ
2
þ ðqv=qx1Þ

2
¼ 0, and a

segment of an original model may be pushed down on a special
surface if j0x3

¼ 0. When jJsjo0, that is j0x3
o0, a dimple may be

generated on a deformed solid.
6.2. Geometric properties

In computer graphics, surface tangent and normal vector of a
solid model are two important geometric quantities—the former
for delineating and constructing the local geometry, and the latter
for obtaining surface orientation and lighting information [4].
Hereby, we present transformation rules for these quantities
associated with the deformation.

For convenience, we denote the surface of a solid model by
parametric form Pðs; tÞ ¼ ðx1ðs; tÞ; x2ðs; tÞ; x3ðs; tÞÞ: By chain rule,
we have

qP

qs
¼ Js

qP

qs
and

qP

qt
¼ Js

qP

qt
, (15)

where Js is the Jacobian matrix. Since any vector tangent to P is a
linear combination of the partial derivatives of Pðs; tÞ, the
transformation rule for the tangent vectors is

T1 ¼ JsT , (16)

where T are the tangent vectors of an original model’s surface and
T1 are the tangent vectors of its deformed model’s surface.

At any points of the surface, we have N � T ¼ NTT ¼ 0. Since

NTT ¼ NT
ðJ�1
s JsÞT ¼ ðN

TJ�1
s ÞT1 ¼ 0 and NT

1T1 ¼ 0, then NT
1T1 ¼

ðNTJ�1
s ÞT1, so the transformation rule for the normal vectors is

N1 ¼ ðJ
�1
s Þ

TN, (17)

where N are the normal vectors of an original model’s surface and
N1 are the normal vectors of its deformed model’s surface.

With Eq. (2), it is evident that

qu
qx1

qu
qx2

qv
qx1

qv
qx2

0
@

1
A ¼ r cos y �r sin y

r sin y r cos y

 !
, (18)

where r ¼ rðx1; x2Þ is a scalar function and y ¼ yðx1; x2Þ is a
rotation function. Therefore, Js can be expressed in the form

Js ¼ SðPÞRðPÞ, (19)

where SðPÞ is a scale matrix defined as

SðPÞ ¼

rðx1; x2Þ 0 0

0 rðx1; x2Þ 0

j0x1
j0x2

j0x3

0
B@

1
CA, (20)
and RðPÞ is a rotation matrix defined as

RðPÞ ¼

cos yðx1; x2Þ � sin yðx1; x2Þ 0

sin yðx1; x2Þ cos yðx1; x2Þ 0

0 0 1

0
B@

1
CA. (21)

Obviously, the angle between any two tangent vectors is holding
after deformation, and an infinitesimal curved triangle is
transformed into a similar one. Thus, the scheme is locally
equiareal. In other words, the deformation preserves the rigid-
body properties of a model locally.

6.3. Volume-preserving property

Suppose that the volume of any differential element of a solid
model is dx1 dx2 dx3, then after deformation, the volume becomes
Js � dx1 dx2 dx3. The volume of the entire deformed solid is simply

the triple integral of this differential volume over the volume
enclosed by the undeformed surface [6].

Theorem 6. For the deformation stated in (7), the Jacobian matrix of

it is expressed in (19). If j0x3
� r2ðx1; x2Þ � 1, the deformation is

volume-preserving.

Proof. As shown in (19)–(21), the determinant of the Jacobian
matrix Js is

jJsj ¼ j0x3
� r2ðx1; x2Þ.

Since j0x3
� r2ðx1; x2Þ � 1, then jJsj � 1. &
7. Implementation and experiments

In this section, we expound our deformation procedure with
two algorithms and present some numerical examples to make
out our method clearly.

Algorithm 1. Deformation in general form.
Input: A solid model P, and a polygon patch B.

Output: A target solid model P.

1.
 Project P on the horizontal plane. The base patch B of P is the

projection.

2.
 Deform P by conformally mapping the base patch B onto the

pre-defined polygon patch B.

3.
 Further adjust the height field of P, then generate the target

model P.

In Algorithm 1, the crucial step is step 2, which is the

Schwarz–Christoffel mapping problem. As aforementioned in
Section 4.1, we solve it by the Schwarz–Christoffel toolbox [25].
In step 3, the height field of P is adjusted by a pre-defined
function.

Algorithm 2. Deformation in hierarchy.
Input: A solid model P, a set of polygon patches B1;B2; . . . ;Bm, and a

set of interpolation basis functions fj ðj ¼ 1;2; . . . ;mÞ.

Output: A target solid model P.

1.
 Sample the given solid model P into a set of cross sections

Bj ðj ¼ 1;2; . . . ;mÞ.
2.
 Deform P by conformally mapping every cross section Bj onto

the pre-defined polygon patch Bj ðj ¼ 1;2; . . . ;mÞ.
3.
 Move Bj ðj ¼ 1;2; . . . ;mÞ to a bottom-up hierarchy.
4.
 Generate the target solid model P by interpolating Bj with the

pre-defined interpolation basis functions fj ðj ¼ 1;2; . . . ;mÞ.
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In Algorithm 2, the interpolation basis functions f ðj ¼ 1;2;
j

. . . ;mÞ which satisfy the conditions in Eq. (12) are pre-defined by
according to user’s desired geometric requirements.

7.1. Experiments

The techniques presented in this paper have been implemen-
ted and tested on several models with genus zero. Four
models—the human face model in Fig. 3, the teapot model in
Fig. 4, the David head model in Fig. 5 and the sphere model in
Fig. 6, are tested based on Algorithm 1. Meanwhile, the cylinder
model in Fig. 8 is tested based on Algorithm 2.

Precisely, for Fig. 3, the original human face ða1Þ is deformed to
ða2Þ and ða3Þ by using the conformal mappings f ðzÞ ¼ e�iz and
f ðzÞ ¼ eiz, respectively, where z ¼ x1 þ ix2 and i is the imaginary
unit. For Fig. 4, we implement deformation with a teapot. From
the first row to the third row of Fig. 4, the models have disk base
patch, square base patch and hexagon base patch, respectively.
And the models in each columns of Fig. 4 have the same height
fields. In column ðb1Þ, the models’ height field are unchanged. The
height field functions associated with the models in column
ðb2Þ2ðb6Þ are listed in Table 2. Fig. 5 is an example of David head
deformation. Head ðc1Þ is the original model, ðc2Þ is a deformation
of ðc1Þ by conformally mapping its base patch into a triangular
domain and maintaining its height field unchanged, and ðc3Þ is
a deformation by conformally mapping its base patch into a
rectangular domain and changing its height field. For Fig. 6, some
deformation models are yielded from a sphere. The sphere
deformation includes conformal mapping its base patches in the
horizontal direction and adjusting the height field in the vertical
direction. Precisely, we first deform the sphere into the models in
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Fig. 3. Human face deformation.

Fig. 4. Teapot d
the second row of Fig. 6 by conformally changing its base patch
from a disk domain to a square domain, a regular hexagon
domain, and etc.; then we adjust the height field of the models in
the second row to yield the models in the third row of Fig. 6. Fig. 8
illustrates the deformation from a cylinder to two chesses in a
hierarchical divisible conformal manner.

Five sectional conformal mappings associated with the sphere
deformation—the mappings on disk to square, hexagon, penta-
gram, spindle and plum blossom, respectively, are illustrated in
Fig. 7. As shown in Fig. 7 in which the conformal property, the
local orthogonality of the interior of the regions, is preserved.
In addition, the parameters of the Schwarz–Christoffel formula of
these mappings are listed in Tables 3–7.

As a matter of fact, in the implement of the deformation, we
just need to know the boundary of the base patch of an objective
model to determine its base patch mapping and then we can
further adjust the shape of the model by changing its height field.

7.2. Complexity analysis

In practice, the crucial step in the implement of our method is the
construction of base patch mapping. For patches with polygon
boundaries, we use Schwarz–Christoffel formula to construct the
conformal mappings between them. The complexity for the evalua-
tion of the integral in the Schwarz–Christoffel formula is OðNÞ and
the evaluation of the parameters in the formula is OðN3

Þ, where N is
the number of polygon vertices. It looks that it is not efficient for
mapping between complicated regions. In fact, we first select the
region of the original model to be deformed and use as few vertices
as possible to determine the region’s boundary. The implement is
efficient because the number of the vertices is always very small.
eformation.

Fig. 5. David head deformation.
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Fig. 6. Sphere deformation.

Table 1
Time requirements for the examples

Model Verts Tris Eval/s

Human face (Fig. 3) 299 562 0.0832

David head (Fig. 5) 1512 2924 2.1853

Sphere (Fig. 6) 7082 14160 3.0293

Teapot (Fig. 4) 530 1024 5.2991

Cylinder (Fig. 8) 4762 9520 3.4313

Table 2

The height fields of the models in column ðd2Þ2ðd6Þ of Fig. 8

d2 d3 d4 d5 d6

x2 þ y2 þ z �x2 þ y2 þ z cosðx2 þ y2Þ þ z sinðx2 þ y2Þ þ z x2

4
�

y2

2:25
þ z
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All the experiments in this paper are implemented on a Intel
Pentium 4 2.60 GHz computer with 512 MB of RAM. Time
requirements for examples given in the paper are listed in
Table 1. Our technique is currently implemented to triangular
mesh models. Verts and Tris in Table 1 denote the number of the
vertices and facets of the model. In every examples we select
the average time. In addition, it need to be stressed that the
deformation method in the paper is not limited to triangular mesh
model, and it can be applied to other models such as quad mesh
model, parametric model, etc.
8. Conclusion

A novel layered deformation method via conformal mapp-
ing is presented in this paper. The method is convenient and
intuitive to deform both the surface and the volume of a 3D
solid model.

Actually, the construction of the base patch mapping is a key
step in our method. To construct the map, we specify a polygon
that determines the target domain and invoke a map constructor
in Schwarz–Christoffel toolbox [25]. The constructor’s main task is
to find the correct values of the pre-vertices zk in formula (8). The
conformal center aða ¼ f ð0ÞÞ and the constant cðc ¼ f 0ð0ÞÞ in
formula (8) can be set by the map constructor. On the other
hand, there may be an inaccurate map to be constructed when the
specified pre-vertices which are not computed from the map
constructor are used, since the pre-vertices may be not compa-
tible with the given polygon. Moreover, in our method the height
field and the similar polygons are approximately determined by
interpolation according to the target of deformation as user’s
requirements. Because of these, the method of the paper need to
be further improved in the aspects such as the precise control of
pre-vertices and the limitations of the specification of the height
field and the employment of similar polygons in the hierarchical
scheme to general cases.

Furthermore, our main attention of the paper is to consider the
layered conformal deformation to a solid model with genus zero.
For a solid model with genus greater than zero, generally, holes in
domains lead to two difficulties in model’s deformation by
conforming mapping. Firstly, for conformal mapping between
two regions in the complex plane, both regions must have the
same connectivity. Secondly, Riemann’s mapping theorem no
longer holds [21]. It can be shown in a fairly straightforward
manner that it is not always possible to map one doubly
connected region onto another. In fact, the only conformal map
of one annulus onto another (assuming, without loss of generality,
that their centers are at the origin) is a linear transformation.
As a direct consequence, all annuli that are the image of a
given doubly connected geometrically similar, and therefore
have the same ratio of inner and outer ratio. This ratio is known
as the modulus of the doubly connected domain. Furthermore,
since any doubly connected domains can be mapped onto an
annulus, it also follows that two doubly connected domains
cannot be conformally mapped onto each other unless they have
the same modulus.

Surface Ricci flow was first introduced by Hamilton [35] and
has been applied for the proof of Poincare conjecture. Ricci flow
refers to conformally deform the Riemann metric of a surface by
its Gaussian curvature, such that the curvature evolved according
to a heat diffusion process [36]. Ricci flow can handle arbitrary
topologies and find arbitrary conformal mappings. The connection
between circle packing and smooth Ricci flow was discovered in
[37]. Circle packing only considers combinatorial structures but
not geometric information. The discrete Ricci flow method was
introduced in [38,39], which incorporate geometric information
and has been applied to compute the geometric structures of
surfaces [40,41].
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Fig. 7. Base patch conformal mappings (conformal sectional mappings) corresponding to the sphere deformation; map a disk domain into domains ðd1Þ2ðd5Þ: the local

orthogonality of the curves in the disk is preserved after deformation.

Table 3
The parameters of the mapping between a disk domain and a square domain

Vertex Alpha Pre-vertex Arg/pi

1:00000þ 1:00000i 0.50000 0:70711þ 0:70711i 0.250000000000

�1:00000þ 1:00000i 0.50000 �0:70711þ 0:70711i 0.750000000000

�1:00000� 1:00000i 0.50000 �0:70711� 0:70711i 1.250000000000

1:00000� 1:00000i 0.50000 0:70711� 0:70711i 1.750000000000

c ¼ 1:0787027þ 0i, conformal center at 0:0000þ 0:0000i.

Table 4
The parameters of the mapping between a disk domain and a regular hexagon

domain

Vertex Alpha Pre-vertex Arg/pi

0:50000þ 0:86600i 0.66667 0:50002þ 0:86601i 0.333324776669

�0:50000þ 0:86600i 0.66667 �0:50002þ 0:86601i 0.666675222417

�1:00000þ 0:00000i 0.66666 �1:00000þ 0:00000i 0.999999999365

�0:50000� 0:86600i 0.66667 �0:50002� 0:86601i 1.333324776437

0:50000� 0:86600i 0.66667 0:50002� 0:86601i 1.666675222555

1:00000þ 0:00000i 0.66666 1:00000þ 0:00000i 2.000000000000

c ¼ 0:89852992þ 1:2026493e� 009i, conformal center at 0:0000þ 0:0000i.

Table 5
The parameters of the mapping between a disk domain and a five-stars domain

Vertex Alpha Pre-vertex Arg/pi

0:95100þ 0:30910i 0.35002 0:95100þ 0:30910i 0.100030688334

0:35880þ 0:45430i 1.23832 0:58780þ 0:80900i 0.299993022552

0:00000þ 1:00000i 0.36300 0:00000þ 1:00000i 0.500000000000

�0:34120þ 0:45430i 1.24773 �0:58780þ 0:80900i 0.700006977448

�0:95100þ 0:30910i 0.34096 �0:95100þ 0:30910i 0.899969311666

�0:54120� 0:14570i 1.25577 �0:95100� 0:30910i 1.100030688334

�0:58780� 0:80900i 0.36838 �0:58780� 0:80900i 1.299993022552

0:00880� 0:59570i 1.22165 0:00000� 1:00000i 1.500000000000

0:58780� 0:80900i 0.37374 0:58780� 0:80900i 1.700006977448

0:55880� 0:14570i 1.24042 0:95100� 0:30910i 1.899969311666

c ¼ 0:42981899� 0:13972703i, conformal center at 0:0000þ 0:0000i.

Table 6
The parameters of the mapping between a disk domain and a spindle domain

Vertex Alpha Pre-vertex Arg/pi

�0:30000� 1:00000i 0.58433 0:79918þ 0:60110i 0.205269178666

0:25000� 0:99000i 0.60459 0:66689þ 0:74516i 0.267625915377

0:42000� 0:46000i 1.29379 0:06417þ 0:99794i 0.479561524841

0:99000� 0:26000i 0.61433 �0:62729þ 0:77879i 0.715835797596

1:00000þ 0:20000i 0.61420 �0:73424þ 0:67889i 0.762459323204

0:45000þ 0:42000i 1.26652 �0:99974þ 0:02261i 0.992800818328

0:24000þ 0:99000i 0.60636 �0:73436� 0:67876i 1.237483346943

�0:29000þ 0:98000i 0.61188 �0:58382� 0:81188i 1.301556922479

�0:48000þ 0:43000i 1.28805 0:07960� 0:99683i 1.525363480531

�1:00000þ 0:25000i 0.60607 0:65009� 0:75986i 1.725268872496

�1:00000� 0:23000i 0.62315 0:76496� 0:64408i 1.777241575753

�0:46000� 0:45000i 1.28674 1:00000þ 0:00000i 2.000000000000

c ¼ �0:53622672� 0:52873955i, conformal center at 0:0000þ 0:0000i.

Fig. 8. Cylinder deformation.
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For the deformation of solid models with arbitrary topological
structures, we need to proceed with efforts based on the discrete
Ricci flow theory or other theories such that the deformation
method of this paper valid for any multiply connected objective.
Fig. 9 shows the deformation associated with a torus based on
our method and the boolean operator theory. Precisely, we
conformally map both the outer disk and the inner disk to the
objective polygons and use the boolean subtraction to get the
expected result.

Generally, the solid models considered in computer graphics
are differential manifolds and have local direct product structures
at least. For a model which is not of a global direct structure,
we can treat it as a general fiber bundle over the base space
and adapt our method for it by conformally deforming its base
space and properly adjusting its fiber. Taking Möbius strip
as an example, whose base space is a unit circle, we apply our
method to it by conformally transforming its circular base
space into a square base space and making its fiber unchanged.
The deformation associated with the Möbius strip is illustrated
in Fig. 10.
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Fig. 9. Torus deformation.

Fig. 10. Möbius strip deformation.

Table 7
The parameters of the mapping between a disk domain and a plum blossom

domain

Vertex Alpha Pre-vertex Arg/pi

0:01000� 0:74000i 1.42643 0:89667þ 0:44271i 0.145981513318

0:34000� 0:99000i 0.73534 0:58829þ 0:80865i 0.299801959090

0:61000� 0:94000i 0.73868 0:51403þ 0:85777i 0.328152657145

0:75000� 0:72000i 0.78338 0:43434þ 0:90075i 0.356979956964

0:71000� 0:37000i 1.27998 0:08386þ 0:99648i 0.473273817487

0:96000� 0:11000i 0.79146 �0:36021þ 0:93287i 0.617293845051

0:99000þ 0:16000i 0.79953 �0:50420þ 0:86358i 0.668213974467

0:87000þ 0:37000i 0.79610 �0:61799þ 0:78619i 0.712052571755

0:48000þ 0:54000i 1.20606 �0:95232þ 0:30510i 0.901309637829

0:30000þ 0:86000i 0.80208 �0:97645� 0:21575i 1.069218966375

0:00000þ 1:00000i 0.72266 �0:91345� 0:40695i 1.133406392393

�0:28000þ 0:87000i 0.78594 �0:82831� 0:56027i 1.189304029499

�0:46000þ 0:51000i 1.26579 �0:35607� 0:93446i 1.384117021118

�0:89000þ 0:39000i 0.71403 0:23980� 0:97082i 1.577081693477

�1:00000þ 0:13000i 0.78401 0:37319� 0:92775i 1.621736827867

�0:92000� 0:15000i 0.86505 0:54444� 0:83880i 1.683257117068

�0:70000� 0:41000i 1.21613 0:85600� 0:51698i 1.827055787319

�0:69000� 0:84000i 0.69457 0:98824� 0:15291i 1.951134361337

�0:51000� 0:96000i 0.84044 0:99625� 0:08650i 1.972431080937

�0:28000� 0:98000i 0.75233 1:00000þ 0:00000i 2.000000000000

c ¼ �0:36319196� 0:7659013i, conformal center at 0:0000þ 0:0000i.

Z. Luo, J. Xue / Computers & Graphics 32 (2008) 695–703 703
Acknowledgments

The authors would like to express their thanks to the reviewers
for their valuable comments and suggestions that significantly
contributed to the improvement of this paper. Many thanks are
given to Doctor Meng Zhaoliang for his constructive recommen-
dations that helped us to finish the work.

References

[1] Bechmann D, Bertrand Y, Thery S. Continuous free form deformation.
Computer Networks and ISDN Systems 1997;29(14):1715–25.

[2] Bechmann D. Space deformation models survey. Computers & Graphics
1994;18(4):571–86.

[3] Watt A, Watt M. Advanced animation and rendering technique. Reading, MA:
Addison-Wesley; 1992.

[4] Barr AH. Global and local deformation of solid primitives. Computer &
Graphics 1984;17(3):21–30.

[5] Borrel P, Bechmann D. Deformation of N-dimensional objects. International
Journal of Computational Geometry and Applications 1991;1(4):427–53.

[6] Sederberg TW, Parry R. Free-form deformation of solid geometric models. In:
SIGGRAPH 86, ACM computer graphics, vol. 20(4), 1986. p. 151–60.
[7] Coquillart S. Externed free-form deformation: a sculpturing tool for 3D
geometric modeling. In: SIGGRAPH 90, ACM computer graphics, vol. 24(4),
1990. p. 187–96.

[8] MacCracken R, Ki J. Free-form deformations with latices of arbitrary topology.
In: SIGGRAPH 96, 1996. p. 181–8.

[9] Lazarus F, Coquillart S, Jancene P. Axial deformation: an intuitive technique.
Compter-Aided Design 1994;26(8):607–13.

[10] Feng JQ, Ma LZ, Peng QS. A new free-form deformation through the control of
parametric surfaces. Computers & Graphics 1996;20(4):531–9.

[11] Alexa M. Differential coordinates for local mesh morphing and deformation.
The Visual Computer 2003;19(2):105–14.

[12] Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossl C, Seidel H-P. Differential
coordinates for interactive mesh editing. In: SMI 2004: proceedings of
the international conference on shape modeling and applications, 2004.
p. 181–90.

[13] Lipman Y, Sorkine O, Levin D, Cohen-Or D. Linear rotation-invariant
coordinates for meshes. ACM Transactions on Graphics 2005;24(3):
479–87.

[14] Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rossl C, Seidel H-P. Laplacian
surface editing. In: Proceedings of the symposium on geometry processing,
2004. p. 175–84.

[15] Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, et al. Large mesh deformation
using the volumetric graph Laplacian. ACM Transactions on Graphics
2005;24(3):496–503.

[16] Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular
meshes. ACM Transactions on Graphics 2005;24(3):561–6.

[17] Pushkar J, Mark M, Tony DR, Brian G, Tom S. Harmonic coordinates for
character articulation. In: SIGGRAPH ’07: ACM transactions on graphics,
vol. 26(3), 2007. p. 71–80.

[18] Alexa M. Mesh editing based on discrete Laplace and Poisson models. In:
SIGGRAPH ’06: ACM SIGGRAPH 2006 courses, 2006. p. 51–9.

[19] Zayer R, Rossl C, Karni Z, Seidel H-P. Harmonic guidance for surface
deformation. Computer Graphics Forum 2005;24(3):601–9.

[20] Huang J, Chen L, Liu X, Bao H. Efficient mesh deformation using tetrahedron
control mesh. In: Proceedings of ACM symposium on solid and physical
modeling, 2008. p. 241–7.

[21] Nehari Z. Conformal mapping. New York: Dover Publications Inc.; 1952.
[22] Krantz SG. Conformal mappings. American Scientist 1999;87(5):436–45.
[23] Henrici P. Applied and computational complex analysis, vol. 1. New York:

Wiley; 1974.
[24] Henrici P. Applied and computational complex analysis, vol. 3. New York:

Wiley; 1986.
[25] Driscoll TA. Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel

mapping. ACM Transactions on Mathematical Software 1996;22(2):
168–86.

[26] Thurston WP. Geometry and topology of three-manifolds. Princeton lecture
notes. Princeton, NJ: Princeton University Press; 1976.

[27] Stephenson K. Introduction to circle packing: the theory of discrete analytic
functions. Cambridge: Cambridge University Press; 2005.

[28] Thurston WP. The finite Riemann mapping theorem. In: Invited talk, An
international symposium at Purdue University on the occasion of the proof of
the Bieberbach conjecture, March 1985.

[29] Rodin B, Sullivan D. The convergence of circle packing to the Riemann
mapping. Journal of Differential Geometry 1987;26(3):349–60.

[30] Collins C, Stephenson K. A circle packing algorithm. Computational
Geometry: Theory and Applications 2003;25:233–56.

[31] Stephenson K. The approximation of conformal structures via circle packing.
In: Computational methods and function theory 1997, Proceedings
of the third CMFT conference, vol. 11. Singapore: World Scientific; 1999.
p. 551–82.

[32] Kerzman N, Trummer MR. Numerical conformal mapping via the Szegö
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