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Efficient Top-k Matching for Publish/Subscribe
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Abstract—With the continued proliferation of mobile Internet and geo-locating technologies, carpooling as a green transport mode is
widely accepted and becoming tremendously popular worldwide. In this paper, we focus on a popular carpooling service called ride
hitching, which is typically implemented using a publish/subscribe approach. In a ride hitching service, drivers subscribe ride orders
published by riders and continuously receive matching ride orders until one is picked. The current systems (e.g., Didi Hitch) adopt a
threshold-based approach to filter ride orders. That is, a new ride order will be sent to all subscribing drivers whose planned trips can
match the ride order within a pre-defined detour threshold. A limitation of this approach is that it is difficult for drivers to specify a
reasonable detour threshold in practice. In addressing this problem, we propose a novel type of top-k subscription queries called Top-k
Ride Subscription (TkRS) query, which continuously returns the best k ride orders that match drivers’ trip plans to them. We propose
two efficient algorithms to enable the top-k result maintenance. We also design a novel hybrid grid index and a two-level buffer
structure to efficiently track the top-k results for all TkRS queries. Finally, extensive experiments on real-life datasets suggest that our
proposed algorithms are capable of achieving desirable performance in practical settings.

Index Terms—Location-based service, ridesharing, order dispatch, query processing, optimization.

F

1 INTRODUCTION

A S a green transport mode, carpooling has been increas-
ingly prevalent around the globe. With carpooling,

empty seats in taxis and private vehicles can be utilized to
reduce traffic congestion, travel costs, and carbon emissions.
As shown in a recent study [10], the potential urban traffic
reduction can be as high as 59% if people are willing to share
a ride with others whose trip plans are similar. In general,
there are two kinds of carpooling services: 1) ride sharing
(e.g., UberPool [28], Lyft Shared [21], GrabShare [14]), in
which passengers going in the same direction are grouped
together for shared rides by the professional drivers whose
destinations are determined by the riders [9], [22], [23]; 2)
ride hitching (e.g., DidiHitch [11], GrabHitch [14]), in which
drivers have their trip plans and share their unoccupied
seats with passengers heading towards similar destina-
tions [17], [19], [27]. In this paper, we focus on ride hitching.

Ride hitching is typically implemented as a pub-
lish/subscribe service. Drivers subscribe ride orders pub-
lished by riders and continuously receive ride orders match-
ing their trip plans until one is picked. The current systems
(e.g., Didi Hitch) adopt a threshold-based approach for
filtering ride orders. That is, a new ride order will be sent
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Fig. 1: A toy example of a TkRS query

to all subscribing drivers whose planned trips can match
the requested ride within a predefined detour threshold. A
limitation of this approach is that it is difficult for drivers
to specify a reasonable detour threshold in practice. If the
threshold is set too large, drivers may be overwhelmed by
a large number of ride orders with some of them being far
way. On the other hand, setting a small threshold may end
up with no matching ride orders.

In addressing this problem, in this paper we propose a
novel type of top-k subscription queries, referred to as Top-k
Ride Subscription (TkRS) queries, which continuously returns
the best k ride orders that match drivers’ trip plans to them.
To evaluate TkRS queries, we consider the following two
aspects: i) matching, meaning that a driver should pick up a
rider within the rider’s expected pick-up time window and
that the detour incurred by picking up and dropping off the
rider should be less than the driver’s tolerable detour; ii)
ranking, meaning that the higher the trip similarity between
the driver and the rider, the higher the ranking.

Example 1. Consider the example in Fig. 1, where s is a TkRS
query (from source Ss to destination Ds) subscribed by a driver,
and o1 (from So1 to Do1 ) and o2 (from So2 to Do2 ) are two ride
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orders that arrive in sequence. The server continuously maintains
the top-1 result for s. When o1 arrives, the server returns o1 as the
top-1 result of s. Later on, when o2 arrives, the server compares
o2 with o1 and determines which one matches s better. Obviously,
o2 wins over o1 since o2 is much closer to s than o1. Thus, the
top-1 result of s is updated from o1 to o2.

While effectively facilitating drivers to select ideal ride
orders in practice, supporting TkRS queries in ride hitching
services brings new technical challenges. First, when a new
ride order arrives, we need to determine the extent of
its trip matching and calculate a ranking score for each
matched TkRS query. Obviously, this process is computa-
tionally prohibitive when the number of TkRS queries is
enormous or the ride orders arrive at a very high rate.
Second, when a ride order in the top-k results expires, it may
also incur a huge computational cost for each affected TkRS
query to find the best substitute from a list of active ride
orders. Third, tackling the two aforementioned processes
involves a significant of routing/re-routing computations,
making it very time consuming. As such, designing efficient
algorithms to handle the TkRS query problem requires non-
trivial efforts.

In this paper, we aim at maintaining up-to-date top-k
results for a large number of TkRS queries over a mass of
ride orders arriving in a stream. We propose several effi-
cient algorithms to solve this problem. More specifically, we
propose a set of pruning techniques to efficiently reduce the
solution space, which can speed up the searching process. To
enhance the pruning capability, we also devise an effective
hybrid index that encodes high-level clustering information,
which can efficiently filter out the unaffected TkRS queries
in a group manner. Moreover, inspired by the concepts of
k-skyband and reachable area, we design a novel two-level
buffer to further strengthen the capability of top-k result
maintenance upon expiry of ride orders in the top-k results.

Overall, the main contributions of this paper are sum-
marized as follows:

• We formally define a new TkRS query problem where
the server continuously maintains the top-k ride
orders for each TkRS query over a ride-order stream.
To the best of our knowledge, we are the first to study
this problem.

• We propose an efficient TkRSMonitor algorithm to
handle the TkRS query problem, which is equipped
with several efficient pruning techniques to substan-
tially accelerate the maintenance process.

• We design a novel index structure called hybrid grid
(HG) index to encode routing query sets, reachable
cell sets, and bounds of travel constraints, endow-
ing the TkRSMonitor algorithm with effective group
pruning capability.

• We also devise an effective two-level buffer structure
to optimize the top-k result maintenance for each
TkRS query upon expiry of ride orders in the top-
k results.

• We evaluate the performance of our proposed algo-
rithms on two real-world datasets. The experimental
results demonstrate that our proposed algorithms
achieve desirable performance under a wide range
of practical settings.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 formulates the defini-
tions used in this paper. Section 4 introduces several efficient
algorithms and two kinds of index mechanisms. Section 5
evaluates our proposed algorithms. Finally, Section 6 con-
cludes this paper and highlights the future work.

2 RELATED WORK

To the best of our knowledge, there are no existing works
studying the problem of top-k publish/subscribe for ride
hitching. As such, we review the existing studies in relevant
areas including publish/subscribe and ridesharing services.

2.1 Publish/Subscribe Services

A publish/subscribe service uses a message distribution
approach where users register their interests as the long-
term queries in the system, and messages from the senders
are classified into different groups and delivered to relevant
users whose interests are matched.

A line of existing works [1], [3], [16], [30], [32] fo-
cuses on developing publish/subscribe systems for spatial
message distribution. Chen et al. [3], [30] consider spatial
objects with a spatial point and match them with a set
of subscriptions if they fall into the associated regions of
the matched subscriptions, while [16], [32] consider spatial-
temporal objects with a spatial region and send them to
a set of subscriptions when the spatial-temporal objects
overlap their associated spatial regions. To further enhance
the usability of publish/subscribe services, several other
existing works [2], [4], [5], [26], [29] study top-k message
publish/subscribe where a server delivers timely messages
with top-k matching scores to relevant subscribers. Chen et
al. [2], [4], [5] study how to maintain the top-k messages in
a time period that is defined by a sliding time window. Both
top-k techniques and spatial-temporal subscription are used
to monitor the top-k spatial-temporal terms over a real-time
document stream. The above works are inherently different
from ours, and it is not trivial to adapt these techniques to
support publish/subscribe ridesharing services.

2.2 Ridesharing Services

As a new model of transportation, ridesharing has largely
reshaped the transportation market and also attracted much
more attention from both academic and industry commu-
nities [8], [11]–[13], [21], [23], [27], [33], [34]. Two primary
categories of ridesharing services are join-based ridesharing
and search-based ridesharing. Join-based ridesharing [9], [13],
[27], [33] intends to solve the problem of how to find driver-
rider pairs with the global optimal rewards between a set
of drivers and a set of riders. Search-based ridesharing [6],
[8], [12], [15], [17], [19], [23], [31] focuses on the situation
where rides’ ride requests are served in a stream fashion. For
each arriving ride request, the server immediately returns
the most suitable driver from the available drivers in the
road network.

Different from previous ridesharing works, the problem
defined in this paper is the first work to study how to
efficiently maintain the up-to-date top-k results for a mass
of TkRS queries over a ride-order stream.
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Fig. 2: The system framework of the TkRS query service

3 PROBLEM FORMULATION

In this section, we first brief the framework of the TkRS
query service, then present several definitions used in this
paper, followed by a running example to illustrate the entire
process, and finally give the problem statement. Table 1
summarizes the main notations used throughout this paper.

3.1 Framework

The general framework of the TkRS query service is shown
in Fig. 2. It includes three main modules: a top-k initializa-
tion module (TIM), an order dispatch module (ODM), and
a top-k maintenance module (TMM). The main workflow
is as follows. Drivers subscribe their TkRS queries in the
server. The TIM sends back the initial top-k results of their
TkRS queries to the drivers ( 1© & 2©). When a new ride
order arrives from a rider, the ODM is invoked to find all
affected TkRS queries and update their top-k results ( 3©
& 4©). Once a ride order expires, the TMM automatically
removes it from the top-k results of all affected TkRS queries
and simultaneously replenishes with the most suitable ride
order from the active ride-order pool ( 5© & 6©). Note that
a TkRS query remains active until the driver selects a ride
order from the top-k results or its departure time arrives; a
ride order keeps active until it is selected by a driver or it is
expired. Active ride orders are stored in the active ride-order
pool until they expire or are selected. Based on the setting
of real-world ride hitching services, we assume each ride
order will be expired a certain time before its pick-up time,
e.g., 30 minutes. Meanwhile, the travel route in a typical ride
hitching is that the driver first departs from his/her origin,
then picks up and drops off the riders at some locations, and
finally drives to his/her destination.

In our service, the system is responsible for continuously
notifying the up-to-date top-k ride orders for each driver,
until the driver decides which ride order to serve from
the top-k results. Only after a driver confirms to serve a
rider will the rider be notified of the serving driver, and
the service relationship will not change. Moreover, if a
ride order is selected by a driver, the ride order will be
removed from the system and other drivers’ top-k results. In
addition, the ride hitching services, such as Didi Hitch and
Grab Hitch, usually do not allow drivers to select riders on
their way, because frequent updating the riders may distract
the drivers, which is a dangerous behavior that may cause
accidents. Based on the real-world business setting, in this
paper we assume that the matching is done before drivers
leave their origins.

TABLE 1: Summary of Notations

Notation Definition
G = (L,E) a road network with a point set L and a road set E.
O, S a stream of ride orders, a set of TkRS queries.
o, s a ride order, a TkRS query.
γs the tolerable detour ratio of s.
κ(o, s) the ranking score of o and s .
π(·, ·) the shortest path distance of two points.
δ(·, ·) the Euclidean distance of two points.
Hk

s , oks the top-k result of s, the k-th ride order in Hk
s .

δ(·, ·) the Euclidean distance of two points.
c a grid cell.
Πc a set of TkRS queries crossing c.
Rc the reachable cells of the TkRS queries in Πc.
Cs the representation of a TkRS query s.
tcs the time range of s moving over c.
τc the upper bound of maximum trip distance of s in Πc.

t−c , t+c
the earliest time arriving at c,
the latest time departing from c.

Oo
s the candidates of the expired ride order o in Hk

s .

Bks , B̂ks
the k-skyband of O with regard to s,
the partial k-skyband of O with regard to s.

κbs
the matching ratio of oks when invoking the top-k
computation most recently.

3.2 Problem Definition

A TkRS query is defined over a road network G = (L,E)
and a stream of ride orders O. The road network G consists
of a set of points L denoting road intersections and a set of
edges E ⊆ L×L denoting road segments connecting a pair
of road intersections. Each ride order o ∈ O is denoted by a
tuple o = (tpo, two , lpo , ldo) where tpo denotes the pick-up time,
two the tolerable waiting time, lpo the pick-up point, and ldo
the drop-off point. A formal definition of a TkRS query is
given in Definition 1.

Definition 1. (TkRS query) A TkRS query, denoted by a tuple
s = (tps , lps , lds , γs, k) where tps denotes the departure time, lps
the origin, lds the destination, γs the tolerable detour ratio, and k
the number of ride orders to be maintained, aims to continuously
maintain the up-to-date top-k results over a stream of ride orders.

The parameter γs in Definition 1 naturally derives from
the observation that drivers usually expect their detour
ratios not to exceed their tolerable thresholds in order to
guarantee high sharing utility [17], [19], [27]. In practice,
γs can be expressed as a set of options for users to select
from. The parameter k means that the system recommends
the top-k matched ride orders for one unoccupied seat of a
driver.

For ease of description, in the sequel we use the terms
rider and ride order or driver and TkRS query interchange-
ably. In addition, maintaining top-k riders will provide a
driver more flexibility to select the best rider based on
his/her personalized preference, e.g., the rider’s rating and
gender, which may affect ridesharing experience. Next, we
formally define the matching between a ride order and a
TkRS query below.

Definition 2. (Matching) Given a set of ride orders O and a set
of TkRS queries S , we call (o, s) ∈ O ×S a matching if the time
constraints of pick-up time and tolerable waiting time of o and the
distance constraint of tolerable detour ratio of s can be satisfied
when s serves o.
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(b) TkRS queries

(c) Ride orders

Fig. 3: A running example of TkRS queries

To measure the trip closeness of a ride order o matching
a TkRS query s, we adopt the following ranking function

κ(o, s) =
π(lps , l

d
s)

π(lps , l
p
o) + π(lpo , ldo) + π(ldo , l

d
s)
, (1)

where π(·, ·) denotes the travel cost between two points in
the road network and can be measured as a travel time
or a travel distance [20], [23], [31]. The ranking function in
Equation 1 essentially measures the trip closeness between a
driver and a rider, and has been widely adopted in many ex-
isting works [12], [19], [23], [27]. Without loss of generality,
any metric that measures the similarity of two trajectories
can also be used to measure the trip closeness. Note that
in this paper we follow the conventional assumption that
a driver can serve at most one rider in a single trip [13],
[27] for two reasons. First, drivers in a ride hitching service
have their daily commutes, and prefer a short detour during
their trips. Serving multiple riders normally results in a long
detour. Second, having multiple riders share a ride may
result in unfriendly user experience, especially for riders
with long-distance trips, because the driver has to pick
up/drop off other riders many times at different locations
during their trips. Hence, in this paper we focus on how
to efficiently maintain the up-to-date top-k results for each
driver serving only one rider. Nevertheless, our proposed
algorithms can also be extended to serve multiple riders, as
discussed in Section 4.5.

Remark that we have considered the time and distance
constraints in our matching model. To evaluate the matching
between riders and drivers, we consider: i) time constraint,
meaning that a driver should pick up a rider within the
rider’s expected pick-up time window, and ii) detour con-
straint, meaning that the detour of the driver incurred by
picking up and dropping off a rider should be less than
the driver’s tolerable detour. Without violating the time and
distance constraints, the rider with a smaller detour distance
has a higher ranking score.

Based on Definitions 1 and 2, we provide a running
example to show how to maintain the top-k results for
all subscribed TkRS queries when new/expired ride orders
appear in the system.

Example 2. Fig. 3(a) shows a road network where the solid
lines are road segments and the numbers indicate road distances,

and Fig. 3(b) and Fig. 3(c) show the origins and destinations
of ride orders and TkRS queries. Initially, there exists a set of
TkRS queries S = {s1, s2, s3} and a stream of ride orders
O = {o1, o2, o3, o4, o5}. The top-2 results of each TkRS query,
along with their ranking scores, are shown in the left of Fig. 3(d).
Now, assume that o1 expires and o6 arrives. Obviously, by com-
puting the ranking scores, the top-2 results of s1 are updated from
{o1, o3} to {o6, o3} and those of s2 are updated from {o1, o2} to
{o2, o4}, while the top-2 results of s3 remain unchanged since o4
and o5 are still the top-2 matched. The updated top-2 results of
s1, s2, and s3 are shown in the right of Fig. 3(d).

Problem statement. Given a large number of TkRS queries
and a ride-order stream, the TkRS query problem aims to
develop an efficient and scalable solution to continuously
maintain the up-to-date top-k results for all subscribed TkRS
queries over the ride-order stream.

3.3 Baseline Methods
To handle the TkRS query problem, several existing tech-
niques can be adapted and are briefed below. They are also
adopted as baseline algorithms in Section 5.

Inverted index based method. This inverted index based
approach is modified from a basic approach to process
the publish/subscribe problem [2], [16]. It dynamically
maintains a ride-order list L, in which each ride order
o ∈ L is associated with a set of TkRS queries whose top-
k results contain o. When an expired ride order appears,
it can quickly identify the affected TkRS queries whose
top-k results need updates and recompute the up-to-date
top-k results accordingly. When a new ride order arrives,
however, it has to compare the ranking score of the new
ride order with those of the top-k results for all subscribed
TkRS queries, resulting in poor runtime performance.

Grid index based method. Unlike the inverted index based
approach, existing works [19], [22], [23] adopt a grid index
to accelerate the search speed, which divides the entire road
network into a series of adjacent cells. Each cell is associated
with a set of TkRS queries whose pick-up points locate in the
cell. The merit of this approach is that it can accelerate the
search speed in a group manner to retrieve the TkRS queries
whose top-k results are affected. However, this method also
generates a large number of candidates and thus increases
the time cost of maintaining top-k results.

To address these weaknesses, we present efficient algo-
rithms with several optimizations to tackle the TkRS query
problem in the following section.

4 PROPOSED SOLUTION

In this section, we first present a top-k initialization method
to initialize the top-k results for TkRS queries. Then we offer
two efficient algorithms equipped with several effective
pruning rules and a novel index to maintain the top-k
results. Finally, we propose an effective buffer mechanism
to support efficient top-k result updates.

4.1 Top-K Initialization
As shown in the framework of the TkRS query service, in the
top-k initialization step, the server assigns the k best match-
ing ride orders to each subscribed TkRS query as the initial
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Algorithm 1 Top-k Initialization
Input: a TkRS query s, a ride-order set O
Output: the top-k results of s

1: Initialize a priority queue qu and a sorted k-size list Hk
s ;

2: for each ride order o in O do
3: if the matching of o and s is valid then
4: qu.add(o, κub(o, s));
5: while qu 6= ∅ do
6: Ride order o← qu.dequeue();
7: if the size of Hk

s is less than k then
8: Hk

s .add(o);
9: else

10: if κ(o, s) > κ(oks , s) then
11: Update Hk

s with o;
12: if κ(oks , s) ≥ κub(s, o) then
13: break;
14: return Hk

s ;

top-k results. It can be solved by our previous work [19].
Since the top-k initialization is the basic component of the
TkRS query service, we briefly explain it for the sake of
completeness. The pseudo code is given in Algorithm 1. The
input augments are a TkRS query s and a ride-order set O.
We first initialize a priority queue qu in decreasing order of
the ranking upper bound κub(o, s) and a sorted k-size list
Hks in decreasing order of the ranking score κ(o, s) to store
the top-k results of s (Line 1). Here, κub(o, s) is computed
by using the Euclidean distance as the lower bound of the
shortest path distance between any two points in a road
network. For each ride order o ∈ O, if there is a matching
between o and s, we compute the ranking upper bound
κub(o, s) and enqueue o into qu according to κub(o, s) (Lines
2–4). Afterwards, for each ride order o in qu, if the size ofHks
is less than k, we add o into Hks . Otherwise, if the ranking
score κ(o, s) of o is larger than that of the k-th ride order
oks inHks , oks is replaced with o. Finally, we compare κ(oks , s)
with the ranking upper bound κub(o, s). If κ(oks , s) is larger
than or equal to κub(o, s), the top-k results of s are found
(Lines 5–14). In what follows, we focus on how to efficiently
maintain the top-k results for all subscribed TkRS queries
over a stream of ride orders.

4.2 TkRSMonitor Algorithm

In this section, we propose an efficient TkRSMonitor algo-
rithm to answer the subscribed TkRS queries. In general,
when a new/an expired ride order appears, we check each
TkRS query in a sequential fashion and determine whose
top-k results are affected. As illustrated in Section 1, such
a process is cost prohibitive. To accelerate the checking
and updating processes, we present two kinds of pruning
rules from the perspectives of service-guaranteed pruning and
matching-bounded pruning as follows.

4.2.1 Service-Guaranteed Pruning
According to Definition 2, the matching of a ride order and a
TkRS query should guarantee the basic service requirements
such as the waiting time and detour ratio constraints. That
is, the driver should pick up the rider at the pick-up point
within the expected pick-up time window (i.e., from tpo to
tpo + two ), and the detour ratio for a TkRS query serving a

ride order should be less than the driver’s tolerable detour
ratio, guaranteed by Lemma 1.

Lemma 1. Given a ride order o and a TkRS query s, o may
affect the top-k results of s if the two conditions hold: (i) ts(lpo) ∈
wo where ts(lpo) denotes the time when s arrives at lpo , wo =
[tpo, t

p
o+ two ] denotes the pick-up time window; and (ii) π(lps , l

p
o)+

π(lpo , l
d
o) + π(ldo , l

d
s) ≤ (1 + γs) · π(lps , l

d
s).

Here we omit the proof of Lemma 1 since it can be easily
derived from the tolerable waiting time and detour ratio
constraints. Lemma 1 indicates that the total travel distance
for a driver taking a new rider should be less than the
maximum travel distance upper bound (1 + γs) · π(lps , l

d
s),

which can efficiently prune the search space. On a sepa-
rate note, frequently computing the shortest path distance
π(lps , l

p
o) in a road network is time consuming, and thus we

can use the Euclidean distance δ(lps , l
p
o) as the lower bound

of the road network distance π(lps , l
p
o). If the condition

δ(lps , l
p
o) + δ(lpo , l

d
o) + δ(ldo , l

d
s) ≥ (1 + γs) · π(lps , l

d
s) holds,

the top-k results of s cannot be affected.
According to Lemma 1, we can avoid updating the top-k

results for the TkRS queries which cannot match the new
ride order, reducing the updating cost. However, there may
still be some TkRS queries whose top-k results cannot be
affected even if they meet Lemma 1, because their ranking
scores may be less than those of the top-k results. Thus, we
next present the effective matching-bounded pruning.

4.2.2 Matching-Bounded Pruning

Besides the service-guaranteed pruning rule, we also at-
tempt to detect the unaffected TkRS queries by comparing
the ranking score of a new ride order with those of the top-
k results. Given a new ride order o and a TkRS query s, if
the ranking score of o is less than or equal to that of the k-
th ride order oks in the top-k results, i.e., κ(o, s) ≤ κ(oks , s),
the top-k results of s cannot be affected. We formally give
the travel distance upper bound of a new ride order w.r.t.
a TkRS query in Theorem 1 to further improve the pruning
capability.

Theorem 1. The travel distance upper bound of a new ride order
o for a given TkRS query s, denoted by πsub(l

p
o , l

d
o), is

πsub(l
p
o , l

d
o) =

π(lps , l
d
s)

κ(oks , s)
− δ(lps , lpo)− δ(ldo , lds). (2)

Proof. The proof can be found in Appendix A.1.

Given a ride order o given a TkRS query s, the travel
distance upper bound of o with regard to s means the
maximum trip distance for o to be a ride order in the
top-k results of s. By adopting the travel distance upper
bound, we can derive an efficient pruning rule, guaranteed
by Lemma 2, to filter out the TkRS queries whose top-k
results do not need updates. The proof of Lemma 2 can be
easily derived from Theorem 1 and thus is omitted here.

Lemma 2. A new ride order o cannot affect the top-k results of a
given TkRS query s if π(lpo , l

d
o) ≥ πsub(lpo , ldo).
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Algorithm 2 TkRSMonitor Algorithm
Input: a ride order o, a TkRS query set S, an inverted ride-order list
L
Output: the updated top-k results of S

1: Initialize an empty TkRS query set So;
2: if o is a new ride order then
3: for each TkRS query s in S do
4: if o and s satisfy Lemma 1 then
5: Compute πs

ub(l
p
o , l

d
o) based on Equation 2;

6: if π(lpo , l
d
o) ≤ πs

ub(l
p
o , l

d
o) then

7: if κ(o, s) > κ(oks , s) then
8: Update Hk

s with o;
9: if o is an expired ride order then

10: So ← the TkRS queries of S in L associated with o;
11: for each TkRS query s in So do
12: Update Hk

s by Algorithm 1;
13: return the updated top-k results of S;

4.2.3 TkRSMonitor Algorithm
Algorithm 2 shows the pseudo code of the TkRSMonitor
algorithm. The input arguments include a ride order o, a
TkRS query set S , and an inverted ride-order list L. It is
worth noting that each ride order o in L is associated with
a set of TkRS queries whose top-k results contain o. We
continuously maintain L over a ride-order stream when
new/expired ride orders appear in the system. At first, we
initialize an empty TkRS query set So (Line 1) and then
handle the input ride order o in two cases. If o is a new
ride order, we check and filter out the TkRS queries which
violate the trip constraints guaranteed by Lemma 1 (Lines
4–5) and the travel distance upper bound guaranteed by
Lemma 2 (Lines 5–6). Thereafter, if the ranking score κ(o, s)
of o is larger than that of the k-th ride order oks in the top-k
resultsHks , we replace oks with o (Lines 7–8). If o is an expired
ride order, we retrieve the inverted ride-order list L and add
the affected TkRS queries that are associated with o into So
(Line 10). For each affected TkRS query s ∈ So, Algorithm 1
is invoked to renew the top-k results (Lines 11-12).

Theorem 2. Algorithm 2 correctly updates the top-k results of
all subscribed queries in S when new/expired ride orders appear.

Proof. The proof can be found in Appendix A.2.

Cost analysis. In summary, the TkRSMonitor algorithm can
efficiently and correctly keep the freshness of top-k results
based on the proposed pruning rules. The time complexity
of Algorithm 2 is O(|S|+ |So| ·Θ(|O|)) where |S| is the total
number of TkRS queries, |So| is the number of TkRS queries
affected by an expired ride order, andΘ(|O|) is the time cost
of top-k initialization. However, the disadvantage is that we
have to examine the top-k results for all subscribed TkRS
queries, resulting in high maintenance cost.

4.3 Advanced TkRSMonitor

For the TkRSMonitor algorithm, if the number of affected
TkRS queries is large, sequentially updating the top-k re-
sults of each TkRS query is still inefficient. To further
enhance the processing performance, we propose an ad-
vanced TkRSMonitor algorithm where the unaffected TkRS
queries can be pruned in a group manner. The advanced
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Fig. 4: The structure of the HG index

TkRSMonitor algorithm is achieved by designing an efficient
and effective hybrid grid index. In what follows, we first
illustrate the hybrid grid index structure and then describe
how to build and update this index. Finally, we present
the advanced TkRSMonitor algorithm by integrating the
proposed index structure.

4.3.1 Efficient Hybrid Grid Index
Indexing is a natural and efficient approach for spatial data
processing problems [7], [17]–[19], [23]. As such, we design
a novel hybrid grid index structure denoted by HG to index
all TkRS queries registered in the system. Fig. 4 shows the
basic structure of an HG index, where each internal entry
is represented as a cell or a square. It partitions the road
network into a set of continuous cells. Each cell represents
an area of the road network and is associated with a set of
TkRS queries that may reach this cell. The basic usage of
an HG index rests with the efficient filtering of TkRS queries
which cannot arrive at riders’ pick-up and drop-off locations
in time. To further enhance the pruning capability, each cell
in an HG index is coupled with three pieces of clustering
information of the associated TkRS queries to support fast
pruning. Specifically, given a grid cell c, the three pieces
of information associated with c include: (i) a set of TkRS
queries Πc where the moving area of each TkRS query in Πc

contains c, (ii) a set of reachable cellsRc which are reachable
for the TkRS queries in Πc, and (iii) the upper bound of
the maximum travel distance τc for the TkRS queries in
Πc. Before explaining these variables, we first introduce the
definition of the representation of a TkRS query, which is
used to calculate the values of these variables.

Due to the waiting time and detour ratio constraints,
the moving range of a TkRS query is restricted to a small
reachable area in the road network. Inspired by this observa-
tion, we represent each TkRS query as a set of time-marked
cells in the grid. Fig. 5 illustrates the representations of two
TkRS queries, where the time-marked cells covered by the
ellipses denote the representations of the TkRS queries, and
the arrows denote the driving directions of the drivers. A
formal definition of the representation of a TkRS query is
given below.

Definition 3. (Representation of a TkRS query) The representa-
tion of a TkRS query s is a set of grid cells Cs where each cell
c ∈ Cs is associated with a time range tc = [t−c , t

+
c ] indicating

the earliest time t−c of s arriving in c and the latest time t+c of s
departing from c, and the combination of cells in Cs can minimally
cover the ellipse Es with two focal points lps and lds such that any
point l on or within the curve of Es satisfies

δ(l, lps) + δ(l, los) ≤ (1 + γs) · π(lps , l
d
s). (3)
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Fig. 5: The representation of a TkRS query

Definition 3 derives from the concept of ellipse, which
denotes a plane curve surrounding two focal points, such
that for all points on or within the curve, the sum of two
distances to the focal points is less than or equal to a
constant. Based on Definition 3, we can derive the spatial-
temporal range that the driver of a TkRS query may reach.
Thus, the three pieces of clustering information coupled
with a grid cell c are detailed as follows.

(1) Routing query set Πc. A routing query set Πc is a set of
TkRS queries that may move across c based on Definition 3.
For example, in Fig. 5, the routing TkRS query set of cell c23
is Πc23 = {s1, s2}, since both of the representations of s1
and s2 contain c23. With Πc, we can quickly identify the
TkRS query which moves across the cells containing the
pick-up/drop-off points of a new ride order. It is of great
importance to improve the filtering efficiency.

(2) Reachable cell set Rc. To further enhance the pruning
capability, we track the reachable cells Rc of all subscribed
TkRS queries moving across the cell c. The reachable cell set
Rc can be calculated as Rc =

⋃|Sc|
i=1 Csi , where |Sc| denotes

the number of TkRS queries across c. Note that a cell c′ inRc
couples with several time ranges since there may be more
than one TkRS query crossing c′, resulting in maintenance
overhead, e.g., storage and computation. In order to balance
the efficiency and effectiveness, we recursively combine the
time ranges coupled with c′ if the gap of any two time
ranges is less than a user-specified parameter ∆, e.g., 30
minutes. Furthermore, we equally divide the whole time
range into a set of time bins Λc = {λ1, λ2, · · · , λm}, e.g.,
one hour, then each cell c′ ∈ Rc can be mapped into
λi if the time range of c′ overlaps λi. Therefore, Rc can
be expressed as a set of cell subsets that are composed
of Rλi

(i ∈ [1,m]) where the time range of each cell in
Rλi

overlapping λi is not empty. The reachable cell set Rc
provides a mechanism to pinpoint the TkRS queries whose
top-k results need updates. Given a grid cell c and a new
ride order o, if the pick-up point lpo locates in c′1 ∈ Rc, the
drop-off point ldo locates in c′2 ∈ Rc, and the pick-up time
window of lpo overlaps the time bin associated with c′1, the
top-k results of all TkRS queries in Rc need updates.

Note that we make use of travel speed bounds to com-
pute the representation of a TkRS query. This is practical be-
cause the travel speed bounds are constant and predictable
in the road network. We adopt the travel speed bounds to
calculate the earliest arrival time and the latest departure
time for each reachable grid cell. As such, we can easily
precompute the variable Rc regardless of how the speed
changes.

Example 3. In Fig. 5, there are two TkRS queries s1 and s2. Each
cell of Πs1 and Πs2 is marked with a time range. Assume that a
new ride order o with pick-up time window wo = [t3, t4] and the
pick-up point lpo ∈ c23 arrives. It is obvious that s2 cannot reach
c23 in time since the time range of s2 moving over c23 is tc23s2 =
[t4, t5], so the top-k results of s2 do not need updates.

(3) Maximum travel distance τc. By definition, the tolera-
ble detour ratio of a TkRS query dominates its maximum
travel distance. Thus, given a new ride order o and a TkRS
query s, if the maximum travel distance of s is less than
the minimum travel distance of o, s cannot match o. To
efficiently find out such TkRS queries, we use an aggregate
variable τc to index the upper bound of the maximum
travel distance of all TkRS queries stored in c, leading to
the pruning rule in Lemma 3.

Lemma 3. Given a new ride order o and a grid cell c, none
of TkRS queries in Πc needs to update the top-k results if
π(lpo , l

d
o) > τc holds.

Proof. The proof can be found in Appendix A.3.

Note that the representation of a TkRS query (i.e., driver)
can still be maintained even if a TkRS query shares a trip
with other ride orders, because the representation is derived
based on the driver’s tolerable detour, limiting the driver’s
maximum reachable area.
Index construction and update. As stated above, the HG
index can enhance the processing capability of order dis-
patch, and the improved performance will be verified in
Section 5. Here we elaborate how to build and update an HG
index. Specifically, we compute the routing query set and
the reachable cell set for each grid cell by a union operation
on the stored TkRS queries, and the maximum travel dis-
tance by selecting the upper bound of the maximum travel
distance of each TkRS query stored in the routing TkRS
query set. Based on the HG index, when receiving a new ride
order, we can filter out the TkRS queries that do not need
updates, which substantially cuts down the computation
cost. Next, we discuss the issue of HG index update. An HG
index needs to be updated only under the circumstances
when a driver registers a new TkRS query or new/expired
ride orders appear in the system. The updating processes of
routing query set, reachable cell set, and maximum travel
distance are the same as the building process.
Cost analysis. A critical task of building an HG index is
to select a reasonable cell size of the grid, since the cell
size determines the number of cells within the HG index
and affects the processing performance. Here we discuss
two extreme cases when the cell size equals the entire road
network or minimally bounds a pick-up/drop-off point.
Then the advanced TkRSMonitor algorithm will degrade into
the TkRSMonitor algorithm, leading to worse performance.
To address this issue, we propose a method to select a
proper cell size of the grid for the best pruning capability
of anHG index. We adopt a probabilistic model to estimate
the expected dispatch cost for different cell sizes. When
dispatching a new ride order o, the dispatch cost costd(o)
consists of the filtering cost costf (o) and the verification cost
costv(o), i.e.,

costd(o) = costf (o) + costv(o). (4)
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The filtering cost costf (o) is mainly determined by the num-
ber of TkRS queries, i.e.,

costf (o) = νf ·
∑
c∈g

p(c) · ns(c), (5)

where νf is the average cost of checking the matching of
a ride order and a TkRS query by our proposed pruning
techniques, p(c) and ns(c) denote the possibility of a ride
order and the number of TkRS queries appearing in a cell
c, respectively. We can easily derive p(c) and ns(c) from the
historical data. For the verification cost costv(o), we assume
that the cost of verifying whether the top-k results of a TkRS
query need to be updated is νv , then we have

costv(o) = νv · |S ′|, (6)

where |S ′| is the average number of remaining TkRS queries
after the filtering step. Thus, given a grid g, the cost of
processing a ride order o is

costd(o, g) = νf ·
∑
c∈g

p(c) · ns(c) + νv · |S ′|. (7)

The cost model of order dispatch guides how to mea-
sure the impact of a cell size on the performance of an
HG index. We take a greedy approach to find the optimal
cell size from the historical data. Similar to the quad-tree
approach [25], we recursively subdivide the entire road
network G into grid gi with 4i cells (i ∈ N) until the
conditions costd(o, gi) ≤ costd(o, gi−1) and costd(o, gi) ≤
costd(o, gi+1) hold. Then, the cell size of gi is the optimal
cell size of the HG index. Note that the optimal cell size can
be computed offline, and only needs to be calculated once.
Thus, it does not affect the online processing performance.
Assume that the cell size of g0 is A and that the algorithm
is terminated forthwith when the road network is divided
into 4i cells. The optimal cell size of the HG index is A/4i.

4.3.2 Advanced TkRSMonitor Algorithm
The pseudo code of the advanced TkRSMonitor algorithm is
given in Algorithm 3. It takes as input a ride order o, a set
of TkRS queries S , an inverted ride-order list L, and an HG
index idx. We first initialize a cell set CS, a TkRS query set
So, and a ride-order set Oos (Line 1). If o is a new ride order,
we conduct order dispatch for all affected TkRS queries in
two stages: filtering and verification. In the filtering stage, we
select the cell c1 containing the pick-up point lpo and the cell
c2 containing the drop-off point ldo (Line 3). After that, for
each cell c of idx, if c1 and c2 are both in the reachable cell set
Rc and π(lpo , l

d
o) ≤ τc, we add c into CS (Lines 5–7), i.e., only

the TkRS queries in CS need to update their top-k results,
guaranteed by Lemma 3. Now, for each TkRS query s ∈
CS, we further check if the pick-up and drop-off points of o
are both in the reachable cell set Cs. If yes, we continue to
check if s matches o without violating their trip constraints
based on Lemma 1 (Lines 10–11). Next, we compute the trip
distance upper bound κub(o, s) (Line 12). If the trip distance
π(lpo , l

d
o) of o is less than or equal to πsub(l

p
o , l

d
o), we compare

the matching ratio κ(o, s) of owith that of the k-th ride order
oks in Hks (Line 13). If κ(o, s) > κ(oks , s), we replace oks with
o (Lines 14–15).

Next, we explain how to maintain TkRS queries when o
is an expired ride order. Comparing with the TkRSMonitor

Algorithm 3 Advanced TkRSMonitor Algorithm
Input: a ride order o, a TkRS query set S, an inverted ride-order list
L, an HG index idx
Output: the updated top-k results of S

1: Initialize a cell set CS, a TkRS query set So, and a ride-order
set Oo

s ;
2: if o is a new ride order then
3: Select the cells c1 containing lpo and c2 containing ldo ;
4: for each cell c in HG idx do
5: if c1 and c2 are both in Rc then
6: if π(lpo , l

d
o) ≤ τc then

7: CS.add(c);
8: for each cell c in CS do
9: for each TkRS query s in Πc do

10: if lpo and ldo are not both in Cs then
11: if o and s satisfy Lemma 1 then
12: Compute πs

ub(l
p
o , l

d
o) based on Equation 2;

13: if π(lpo , l
d
o) ≤ πs

ub(l
p
o , l

d
o) then

14: if κ(o, s) > κ(oks , s) then
15: Update Hk

s with o;
16: if o is an expired ride order then
17: So ← the TkRS queries of S in L associated with o;
18: for each TkRS query s in So do
19: Compute Oo

s based on Theorem 3;
20: Compute Hk

s from Oo
s by Algorithm 1;

21: return the updated top-k results of S;

algorithm, the difference is that, for each affected TkRS
query s ∈ So, the candidates of the top-k results are in
the ride-order set Oos , guaranteed by Theorem 3, instead
of the active order pool (Lines 18–20). Hence, making use
of an HG index, we can substantially accelerate the top-k
updating process for each affected TkRS query.

Theorem 3. Given a TkRS query s, the candidate ride-order set
to replenish an expired ride order o inHks , denoted by Oos , should
satisfy ∀o′ ∈ Oos , ∃ c1, c2 ∈ Cs, s.t., lpo′ ∈ c1, ldo′ ∈ c2, and
wo′ ∩ tc1s 6= ∅.

The proof of Theorem 3 can be derived from Definition 3
and is omitted here. By Theorem 3, the search space of
the top-k maintenance can be significantly reduced, leading
to better processing performance. The correctness of Algo-
rithm 3 is guaranteed by Theorem 4, whose proof is similar
to that of Theorem 2.

Theorem 4. Algorithm 3 can correctly update the top-k results of
all subscribed TkRS queries when new/expired ride orders appear
in the system.

Cost analysis. Compared with Algorithm 2, the unqualified
TkRS queries can be pruned in a batch manner by the HG
index. The time complexity of the advanced TkRSMoni-
tor algorithm is O(max{|Πc| · |CS|, |So| · Θ(|Oos)|}) where
|Πc| · |CS| and |So| ·Θ(|Oos |) are the top-k maintenance costs
when a new ride order arrives and an existing ride order
expires, respectively. Due to the effective pruning capability
of the HG index, numerous unmatched ride orders are
pruned so that |Πc| · |CS| is much smaller than |S|. Hence,
the performance of the advanced TkRSMonitor algorithm is
expected to be much better than that of the TkRSMonitor
algorithm.
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Fig. 6: The two-level buffer structure

4.4 Optimizations

By adopting the novel HG index structure, we can efficiently
process the affected TkRS queries in a group manner. When
an existing ride order expires, the top-k initialization mod-
ule is invoked to search the top-k results for all affected
TkRS queries in the candidate ride-order set Oos rather
than in the active ride-order pool (i.e., the whole search
space), which substantially accelerates the updating speed.
To further reduce the top-k maintenance cost, we design a
two-level buffer structure for each TkRS query, where the
first-level buffer contains the ride orders whose pick-up and
drop-off points are in the reachable cell set and the second-
level buffer includes the ride orders that are obtained by the
skyband computation [24] over the ride orders in the first-
level buffer. Note that the skyband used in the work [24] is
only one component of our proposed OPT solution, which is
originally designed to process textual data and thus cannot
support spatial data processing well. Fig. 6 shows the basic
structure of the two-level buffer. When there is an expired
ride order, we remove it from the top-k results of all affected
TkRS queries and replenish it with the most matched ride
order from the second-level buffer. If there is no matched
ride order in the second-level buffer, we need to renew
the top-k results from the first-level buffer and update the
second-level buffer accordingly.

For the first-level buffer, given a TkRS query s, the
ride orders with pick-up and drop-off points in the rep-
resentation of s are contained the first-level buffer. Thus,
we can easily build the first-level buffer by adopting the
representation of the TkRS query, which is guaranteed by
Theorem 3. Next, we focus on how to build the second-level
buffer by computing the k-skyband. Here, we first introduce
the definitions of dominance and k-skyband in the context of
the TkRS query problem.
Definition 4. (Dominance) Given a TkRS query s and two ride
orders o1 and o2, o1 dominates o2 if κ(o1, s) ≥ κ(o2, s) and
tpo1 ≥ t

p
o2 .

Consider a TkRS query s1 and three ride orders o1, o2,
and o3. Assume κ(o1, s1) ≥ κ(o2, s1) ≥ κ(o3, s1) and to1 ≥
to2 ≥ to3 . By Definition 4, o2 and o3 are dominated by o1
over s1. Next, we introduce k-skyband based on Definition 4.

Definition 5. (k-skyband) Given a TkRS query s and a ride-
order set O, the k-skyband of O w.r.t. s, denoted by Bks , is a
ride-order set in which each ride order o ∈ Bks is dominated by
less than k ride orders in O − {o}.

Fig. 7: An example of a 2-skyBand buffer

Theorem 5. Given a TkRS query s and a ride-order set O, the
top-k results Hks must be in the k-skyband Bks .

Proof. The proof can be found in Appendix A.4.

Theorem 5 tells that the top-k results are a subset of the
k-skyband of s. The k-skyband provides a mechanism to
cache the most possible candidates for those ride orders that
are about to expire in the top-k results.

Example 4. In Fig. 7, the x-axis and the y-axis denote the time t
and the ranking score κ(o, s), respectively. In the initial stage (i.e.,
at time t = 0 as illustrated in Fig. 7(a)), there is a TkRS query
s and a ride-order set O = {o1, o2, o3, o4, o5, o6} in the system.
The ranking score κ(o, s) and the arrival/expired time of each
ride order o ∈ O are shown in Fig. 7(a). The top-2 results of s are
Hks = {o2, o5}, and the 2-skyband ofO is Bks = {o2, o5, o3, o6}.

At time t = 1 (Fig. 7(b)), the new ride order o7 arrives.
Since κ(o7, s) > κ(o5, s), the top-2 results are updated to Hks =
{o2, o7}. Now, o3 is dominated by o5 and o7. Since the number
of dominating orders of o3 exceeds 1, o3 is removed from the 2-
skyband Bks , and Bks is updated to Bks = {o2, o7, o5, o6};

At time t = 2 (Fig. 7(c)), the new ride order o8 arrives.
Although o8 cannot affect the top-2 results Hks , it incurs the
updating of Bks because o6 is dominated by o7 and o8. Thus,
the updated 2-skyband is Bks = {o2, o7, o5, o8}.

At time t = 3 (Fig. 7(d)), the existing ride order o2 expires,
and it is removed from Hks . Then o5 with the highest ranking
score is selected to replenish the top-2 results Hks = {o7, o5},
and the 2-skyband of s is also changed to Oks = {o7, o5, o8}
accordingly.

For the top-k maintenance, the critical operation is to
maintain a small set of candidates in the second-level buffer.
For instance, given a TkRS query, we continuously maintain
the k-skyband which can efficiently replenish the expired
ride orders in the top-k results. When an expired ride order
appears, the system selects the ride order with the highest
ranking score from the two-level buffer and substitutes it
for the expired one in the top-k results. Hence, maintain-
ing the candidates of the top-k results transfers to a task
of k-skyband maintenance. However, maintaining the k-
skyband over all ride orders in the first-level buffer is also
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cost-prohibitive. To solve this issue, we define a partial
k-skyband in Definition 6, which is used to reduce the
candidate space for building the second-level buffer.

Definition 6. (Partial k-skyband) A partial k-skyband, denoted
by B̂ks , is a subset of Bks such that each ride order o ∈ B̂ks satisfies
κ(o, s) ≥ κbs, where κbs is the ranking score of the k-th ride order
in Hks when invoking the most recent top-k computation.

According to Definition 6, we know that the top-k results
Hks are also a subset of B̂ks . Therefore, we have the following
lemma.

Lemma 4. The ride order replacing the expired ride order of Hks
must be in B̂ks if the size of B̂ks is larger than k.

The proof of Lemma 4 is omitted since it can be derived
from Defintion 6. Lemma 4 suggests that a partial k-skyband
can indeed reduce the candidate space.

Algorithm 4 gives the pseudo code of the optimized
process to continuously maintain the two-level buffer and
the top-k results. The input arguments include a TkRS query
s whose top-k results should be maintained, a new/an
expired ride order o, and a threshold κbs used for ranking
score comparison where the value of κbs is the ranking score
of the k-th ride order when invoking the most recent top-k
computation. In Algorithm 4, the maintenance of the top-k
results and two-level buffer of s is invoked in two cases: (1)
When o is a new ride order, if the matching of o and s exists
and the ranking score satisfies κ(o, s) ≥ κbs, we further check
each ride order o′ in B̂ks ∪ {o}. If the number of dominating
ride orders of o′ is larger than or equal to k, o′ should be
removed from B̂ks . Otherwise, we add o into B̂ks (Lines 3–15).
Next, if the ranking score of o is larger than that of the k-th
ride order oks , we add o into Hks (Lines 16–17). (2) When o is
an expired ride order and o ∈ Hks , we first remove o from
B̂ks and Hks . If the size of B̂ks is no less than k, we add the
ride order o′ with the highest κ(o′, s) from B̂ks intoHks as the
supplement (Lines 20–22). Otherwise, if the size of B̂ks equals
k-1, we need to recalculate the top-k results Hks from Oos ,
i.e., the first-level buffer, by invoking the top-k initialization
algorithm and refresh the corresponding threshold κbs (Lines
25–26). By adopting the proposed two-level buffer, we can
quickly update the top-k results for all affected TkRS queries
when expired ride orders appear in the system.
Cost analysis The two-level buffer indeed accelerates the
maintenance of top-k results for each TkRS query. The time
complexity of Algorithm 4 is O(|Bks |+Θ(|Oos)|). Compared
with the advanced TkRSMonitor algorithm, the optimized
algorithm can substantially improve the processing perfor-
mance at the cost of slightly more memory usage, which
will be experimentally verified in Section 5.

4.5 Serving Multiple Ride Orders
It is easy to extend our algorithms to serve multiple ride
orders in a single TkRS query. In general, when a driver
serves multiple riders, the driver can select the riders
independently in a round-robin approach, i.e., the driver
selects the riders one after another. At first, when a driver
has not started to serve any rider, the system notifies the
driver the first batch of top-k matched riders. Since now
there is only one moving pattern for the driver, the ranking

Algorithm 4 Optimized Processing Approach

Input: a TkRS query s, a ride order o, and a threshold κb
s

Output: the partial k-skyband B̂k
s

1: if o is a new ride order then
2: if the matching of o and s is valid then
3: if κ(o, s) ≥ κb

s then
4: for each ride order o′ ∈ B̂k

s do
5: if κ(o, s) ≤ κ(o′, s) and to ≤ to′ then
6: o.num← o.num+ 1;
7: if o.num ≥ k then
8: break;
9: if o.num < k then

10: for each ride order o′ ∈ B̂k
s do

11: if κ(o′, s) ≤ κ(o, s) and to′ ≤ to then
12: o′.num← o′.num+ 1;
13: if o′.num ≥ k then
14: B̂k

s .remove(o′);
15: B̂k

s .add(o);
16: if κ(o, s) ≥ κ(oks , s) then
17: Update Hk

s with o;
18: if o is an expired ride order in B̂k

s then
19: Remove o from B̂k

s and Hk
s ;

20: if |B̂k
s | ≥ k then

21: Select the ride order o′ ∈ B̂k
s with the best κ(o′, s);

22: Hk
s .add(o′);

23: else
24: Compute Hk

s from Oo
s by Algorithm 1;

25: B̂k
s ←Hk

s ;
26: κb

s ← κ(oks , s);
27: return B̂k

s ;

score is calculated according to Equation 1. After the driver
selects a rider from the first batch of the top-k matched
riders, the system will compute and notify the driver of
the second batch of top-k matched riders. In this case, we
need to plan a route for the pick-up and drop-off points
of the already onboarded riders and the new rider such
that the driver’s actual total detour is minimum. Therefore,
the ranking function to rank a new rider o is defined as
κ(o, s) =

π(lps ,l
d
s)

MinD(s,o) , where MinD(s, o) denotes the minimum
travel distance when the driver s serves the new rider o and
its already onboarded riders. Here, we adopt the method of
point insertion presented in [9], [31] to plan the order of the
pick-up and drop-off points for all onboarded riders and the
new rider o. Using the above method, the drivers can select
the riders to share the remaining seats.

In addition, there is no difference in building or updating
an HG index and a two-level buffer between serving only
one ride order and serving multiple ride orders. This is be-
cause no matter how many ride orders a TkRS query serves,
the pick-up/drop-off points and the pick-up time windows
of the eligible ride orders should satisfy the constraints of
the representation of a given TkRS query.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of different
algorithms on two real datasets. As explained in Section 3.3,
the inverted index based method (referred to as IM) and
the grid index based method (referred to as GM) are con-
sidered the baselines. The TkRSMonitor Algorithm presented
in Section 4.2 is referred to as TA, the Advanced Algorithm
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TABLE 2: Dataset properties

Items ChengDu NewYork

total # of ride orders 200K 200K
total # of TkRS queries 50K 50K
total # of intersections 36,630 264,346
total # of roads 50,786 366,923
total # of trips 200K 200K

TABLE 3: Parameter settings

Parameters Value Default

k 1, 2, 3, 4, 5 3
# of ride orders 30K, 50K, 100K, 150K, 200K 100K
# of TkRS queries 10K, 20K, 30K, 40K, 50K 30K
maximum waiting time (mins) 3, 5, 10, 15, 20 10
tolerable detour ratio 0.1, 0.2, 0.3, 0.4, 0.5 0.3
capacity of vehicle 1, 2, 3, 4, 5 3

introduced in Section 4.3 is referred to as ADV, and the
two-level buffer based Optimized Algorithm presented in
Section 4.4 is referred to as OPT. We evaluate the above
methods in terms of average elapsed time, memory cost,
and throughput, which are critical to a ride hitching service.
5.1 Experimental Settings
We evaluate the algorithms over two real trajectory datasets
collected from NYCTaxi1 and DiDi2, which are widely used
to evaluate ridesharing services. Table 2 shows the prop-
erties of these two datasets. The NYCTaxi dataset contains
one month’s trajectories, including 1,445,285 trips in March,
2017 in New York, and trajectories released by DiDi include
853,156 trips in Cheng Du over one month starting in Jan-
uary, 2016. We map the starting and ending points of each
trip to their nearest road intersections on the road network
according to the latitude and longitude coordinates. We se-
lect the mapped starting point and ending point as the pick-
up point (origin) and drop-off point (destination) of the ride
order (TkRS query), respectively. Meanwhile, we treat the
timestamp of starting point as the pick-up time (departure
time) of the ride order (TkRS query). We randomly generate
a certain number of TkRS queries and a stream of ride
orders based on the released trajectories. Note that the data
is retrieved from the time range from 7:00am to 9:00am (i.e.,
one of the peak ordering periods) in normal weekdays. In
the default setting, 13.8 ride orders are issued per second
and 30K TkRS queries are registered in the system. We
extract the road network information from OpenStreetMap3

to construct the underlying road networks for the cities
of New York and Cheng Du. The experimental parameter
settings are summarized in Table 3, where k denotes the
number of returned ride orders for each TkRS query. All the
algorithms are implemented in Java and evaluated on a PC
with an Intel i7-8700 @ 3.60HZ CPU and 16GB DDR4 RAM.
5.2 Experimental Results
Effect of the number of ride orders. The first set of experiments
is designed to examine the performance of different algo-

1http://www.nyc.gov
2https://gaia.didichuxing.com
3https://www.openstreetmap.org

rithms under varying numbers of ride orders. Fig. 8 shows
the average elapsed time of different algorithms under
different numbers of ride orders. We can observe that the
proposed algorithms ADV and OPT perform better than the
algorithms TA, IM and GM, and that they are less sensitive
to the increase of the number of ride orders. The perfor-
mance of ADV and OPT is still reasonably good even when
the number increases to 200k, demonstrating the effective
pruning capability of HG indexes. It is worth noting that,
due to the effective two-level buffer, the candidates to the
expired ride orders in the top-k results are cached, and thus
many repeated computations are reduced in the process of
top-k maintenance, leading to the best performance of OPT.
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Fig. 8: Elapsed time vs. # of ride orders
Effect of k. In this set of experiments, we evaluate the

performance of all algorithms under various k values (i.e.,
the number of top-k results maintained for a TkRS query).
As plotted in Fig. 9, with the increase in k, all algorithms
spend more time to maintain the top-k results, because the
greater the value of k, the more candidates need to be main-
tained. It can be observed that ADV and OPT achieve the
best update performance under all k values due to the good
pruning capability of HG indexes. Moreover, compared with
ADV, OPT just needs to retrieve all the ride orders from the
two-level buffer instead of the reachable cell set of each TkRS
query, and thus requires less time than ADV when updating
the top-k results for all affected TkRS queries.
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Fig. 9: Elapsed time vs. the value of k
Effect of the number of TkRS queries. Next, we evaluate

the performance of different algorithms by varying the
number of TkRS queries. Intuitively, a larger number of
TkRS queries results in a larger candidate space for the top-k
maintenance. From Fig. 10, it can be seen that the time cost
of all algorithms increases when the number of TkRS queries
becomes larger. As expected, thanks to the strong pruning
capability of HG indexes and the two-lever buffer, ADV and
OPT achieve better performance than that of TA, IM, and
GM, with up to nearly 100X performance improvement.

Effect of the waiting time. In this set of experiments, we
investigate how the waiting time affects the performance
of the algorithms. Fig. 11 plots the performance pattern
when varying the length of the waiting time. It can be
observed that all algorithms need more time to examine and
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Fig. 10: Elapsed time vs. # of TkRS queries

update the top-k results of all affected TkRS queries with
the increase in the waiting time. The reason is that, when
the waiting time gets longer, there are more TkRS queries
becoming eligible to serve a given ride order. It follows
that the number of affected TkRS queries increases a lot
when a new or an expired ride order with longer waiting
time appears in the system, resulting in more updating cost.
Again ADV and OPT have better performance due to the
good pruning capability of HG indexes and the two-level
buffer.
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Fig. 11: Elapsed time vs. the waiting time
Effect of the detour ratio. We next consider the performance

of the algorithms under different values of detour ratios.
Intuitively, a larger detour ratio offers a TkRS query more
chance to serve more eligible ride orders, which in turn
enlarges the search space. In Fig. 12, we can observe that
the results are consistent with our theoretical analysis that
the time cost of all algorithms considerably degrades with
the increase in the detour ratio. In all settings, ADV and
OPT still outperform the other three algorithms due to better
pruning capability.
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Memory costs of different methods. As discussed earlier,
indexes and buffers play an important role in improving the
processing performance of our proposed algorithms. Thus,
in the last set of experiments, we examine the memory costs
of different methods under the default parameter settings.
Table 4 gives the memory costs of different methods. GM,
TA, ADV, and OPT require more memory costs than that
of IM, while the benefit is that the additional memory
cost greatly improves the processing performance of our
proposed algorithms. Compared with GM and TA, ADV and

OPT achieve two orders of magnitude smaller running time
at the expense of just about 3 times space cost, proving the
effectiveness of our proposed methods.

TABLE 4: Memory costs of different methods

Datasets IM GM TA ADV OPT
New York 866MB 1,453MB 1,196MB 2,253MB 2,446MB
Cheng Du 308MB 1,244MB 426MB 1,434MB 1,450MB

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel TkRS query problem in a
ride hitching system. To maintain the freshness of the top-k
results for each TkRS query, we proposed several efficient
algorithms with effective pruning techniques. Moreover, we
also proposed an efficient HG index and an effective two-
level buffer to further improve the processing performance.

As for future work, we plan to extend our current work
in the following directions. First, we attempt to study the
cross matching problem for ride hitching to integrate drivers
and riders in different platforms. Second, we plan to study
the data persistence or distributed computing techniques to
solve the problem when the number of TkRS queries and
ride orders cannot fit in memory.
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